PyGCL: Graph Contrastive Learning Library for PyTorch

Overview

PyGCL: Graph Contrastive Learning for PyTorch

PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL components from published papers, standardized evaluation, and experiment management.


Prerequisites

PyGCL needs the following packages to be installed beforehand:

  • Python 3.8+
  • PyTorch 1.7+
  • PyTorch-Geometric 1.7
  • DGL 0.5+
  • Scikit-learn 0.24+

Getting Started

Take a look at various examples located at the root directory. For example, try the following command to train a simple GCN for node classification on the WikiCS dataset using the local-local contrasting mode:

python train_node_l2l.py --dataset WikiCS --param_path params/GRACE/[email protected] --base_model GCNConv

For detailed parameter settings, please refer to [email protected]. These examples are mainly for reproducing experiments in our benchmarking study. You can find more details regarding general practices of graph contrastive learning in the paper.

Usage

Package Overview

Our PyGCL implements four main components of graph contrastive learning algorithms:

  • graph augmentation: transforms input graphs into congruent graph views.
  • contrasting modes: specifies positive and negative pairs.
  • contrastive objectives: computes the likelihood score for positive and negative pairs.
  • negative mining strategies: improves the negative sample set by considering the relative similarity (the hardness) of negative sample.

We also implement utilities for loading datasets, training models, and running experiments.

Building Your Own GCL Algorithms

Besides try the above examples for node and graph classification tasks, you can also build your own graph contrastive learning algorithms straightforwardly.

Graph Augmentation

In GCL.augmentors, PyGCL provides the Augmentor base class, which offers a universal interface for graph augmentation functions. Specifically, PyGCL implements the following augmentation functions:

Augmentation Class name
Edge Adding (EA) EdgeAdding
Edge Removing (ER) EdgeRemoving
Feature Masking (FM) FeatureMasking
Feature Dropout (FD) FeatureDropout
Personalized PageRank (PPR) PPRDiffusion
Markov Diffusion Kernel (MDK) MarkovDiffusion
Node Dropping (ND) NodeDropping
Subgraphs induced by Random Walks (RWS) RWSampling
Ego-net Sampling (ES) Identity

Call these augmentation functions by feeding with a graph of in a tuple form of node features, edge index, and edge features x, edge_index, edge_weightswill produce corresponding augmented graphs.

PyGCL also supports composing arbitrary number of augmentations together. To compose a list of augmentation instances augmentors, you only need to use the right shift operator >>:

aug = augmentors[0]
for a in augs[1:]:
    aug = aug >> a

You can also write your own augmentation functions by defining the augment function.

Contrasting Modes

PyGCL implements three contrasting modes: (a) local-local, (b) global-local, and (c) global-global modes. You can refer to the models folder for details. Note that the bootstrapping latent loss involves some special model design (asymmetric online/offline encoders and momentum weight updates) and thus we implement contrasting modes involving this contrastive objective in a separate BGRL model.

Contrastive Objectives

In GCL.losses, PyGCL implements the following contrastive objectives:

Contrastive objectives Class name
InfoNCE loss InfoNCELoss
Jensen-Shannon Divergence (JSD) loss JSDLoss
Triplet Margin (TM) loss TripletLoss
Bootstrapping Latent (BL) loss BootstrapLoss
Barlow Twins (BT) loss BTLoss
VICReg loss VICRegLoss

All these objectives are for contrasting positive and negative pairs at the same scale (i.e. local-local and global-global modes). For global-local modes, we offer G2L variants except for Barlow Twins and VICReg losses. Moreover, for InfoNCE, JSD, and Triplet losses, we further provide G2LEN variants, primarily for node-level tasks, which involve explicit construction of negative samples. You can find their examples in the root folder.

Negative Mining Strategies

In GCL.losses, PyGCL further implements four negative mining strategies that are build upon the InfoNCE contrastive objective:

Hard negative mining strategies Class name
Hard negative mixing HardMixingLoss
Conditional negative sampling RingLoss
Debiased contrastive objective InfoNCELoss(debiased_nt_xent_loss)
Hardness-biased negative sampling InfoNCELoss(hardness_nt_xent_loss)

Utilities

PyGCL provides various utilities for data loading, model training, and experiment execution.

In GCL.util you can use the following utilities:

  • split_dataset: splits the dataset into train/test/validation sets according to public or random splits. Currently, four split modes are supported: [rand, ogb, wikics, preload] .
  • seed_everything: manually sets the seed to numpy and PyTorch environments to ensure better reproducebility.
  • SimpleParam: provides a simple parameter configuration class to manage parameters from microsoft-nni, JSON, and YAML files.

We also implement two downstream classifiersLR_classification and SVM_classification in GCL.eval based on PyTorch and Scikit-learn respectively.

Moreover, based on PyTorch Geometric, we provide functions for loading common node and graph datasets. You can useload_node_dataset and load_graph_dataset in utils.py.

Owner
GCL: Graph Contrastive Learning Library for PyTorch
GCL: Graph Contrastive Learning Library for PyTorch
A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API

micrograd A tiny Autograd engine (with a bite! :)). Implements backpropagation (reverse-mode autodiff) over a dynamically built DAG and a small neural

Andrej 3.5k Jan 08, 2023
A pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch.

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
PyTorch implementation of TabNet paper : https://arxiv.org/pdf/1908.07442.pdf

README TabNet : Attentive Interpretable Tabular Learning This is a pyTorch implementation of Tabnet (Arik, S. O., & Pfister, T. (2019). TabNet: Attent

DreamQuark 2k Dec 27, 2022
Training RNNs as Fast as CNNs (https://arxiv.org/abs/1709.02755)

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
S3-plugin is a high performance PyTorch dataset library to efficiently access datasets stored in S3 buckets.

S3-plugin is a high performance PyTorch dataset library to efficiently access datasets stored in S3 buckets.

Amazon Web Services 138 Jan 03, 2023
lookahead optimizer (Lookahead Optimizer: k steps forward, 1 step back) for pytorch

lookahead optimizer for pytorch PyTorch implement of Lookahead Optimizer: k steps forward, 1 step back Usage: base_opt = torch.optim.Adam(model.parame

Liam 318 Dec 09, 2022
Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric

Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric

Quiver Team 221 Dec 22, 2022
Differentiable ODE solvers with full GPU support and O(1)-memory backpropagation.

PyTorch Implementation of Differentiable ODE Solvers This library provides ordinary differential equation (ODE) solvers implemented in PyTorch. Backpr

Ricky Chen 4.4k Jan 04, 2023
PyTorch Extension Library of Optimized Scatter Operations

PyTorch Scatter Documentation This package consists of a small extension library of highly optimized sparse update (scatter and segment) operations fo

Matthias Fey 1.2k Jan 07, 2023
Code snippets created for the PyTorch discussion board

PyTorch misc Collection of code snippets I've written for the PyTorch discussion board. All scripts were testes using the PyTorch 1.0 preview and torc

461 Dec 26, 2022
Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Fangjun Kuang 119 Jan 03, 2023
The goal of this library is to generate more helpful exception messages for numpy/pytorch matrix algebra expressions.

Tensor Sensor See article Clarifying exceptions and visualizing tensor operations in deep learning code. One of the biggest challenges when writing co

Terence Parr 704 Dec 14, 2022
Bunch of optimizer implementations in PyTorch

Bunch of optimizer implementations in PyTorch

Hyeongchan Kim 76 Jan 03, 2023
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
High-fidelity performance metrics for generative models in PyTorch

High-fidelity performance metrics for generative models in PyTorch

Vikram Voleti 5 Oct 24, 2021
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News March 3: v0.9.97 has various bug fixes and improvements: Bug fixes for NTXentLoss Efficiency improvement for AccuracyCalculator, by using torch i

Kevin Musgrave 5k Jan 02, 2023
A PyTorch implementation of EfficientNet

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
PyTorch toolkit for biomedical imaging

farabio is a minimal PyTorch toolkit for out-of-the-box deep learning support in biomedical imaging. For further information, see Wikis and Docs.

San Askaruly 47 Dec 28, 2022
PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

Henrique Morimitsu 105 Dec 16, 2022