Data Model built using Logistic Regression Algorithm on Python.

Overview

Logistic-Regression

Problem Statement:

Your client is a retail banking institution. Term deposits are a major source of income for a bank.
A term deposit is a cash investment held at a financial institution. Your money is invested for an agreed rate of interest over a fixed amount of time, or term.
The bank has various outreach plans to sell term deposits to their customers such as email marketing, advertisements, telephonic marketing and digital marketing.
Telephonic marketing campaigns still remain one of the most effective way to reach out to people. However, they require huge investment as large call centers are hired to actually execute these campaigns. Hence, it is crucial to identify the customers most likely to convert beforehand so that they can be specifically targeted via call. You are provided with the client data such as : age of the client, their job type, their marital status, etc. Along with the client data, you are also provided with the information of the call such as the duration of the call, day and month of the call, etc. Given this information, your task is to predict if the client will subscribe to term deposit.

Data: You are provided with following files:

  1. train.csv : Use this dataset to train the model. This file contains all the client and call details as well as the target variable “subscribed”. You have to train your model using this file.

  2. test.csv : Use the trained model to predict whether a new set of clients will subscribe the term deposit.

Data Dictionary: Here is the description of all the variables: Variable Definition ID Unique client ID age Age of the client job Type of job marital Marital status of the client education Education level default Credit in default. housing Housing loan
loan Personal loan contact Type of communication month Contact month day_of_week Day of week of contact duration Contact duration campaign number of contacts performed during this campaign to the client pdays number of days that passed by after the client was last contacted previous number of contacts performed before this campaign poutcome outcome of the previous marketing campaign Subscribed(target) has the client subscribed a term deposit?

How good are your predictions?
Evaluation Metric: The Evaluation metric for this competition is accuracy. Solution Checker: You can use solution_checker.xlsx to generate score (accuracy) of your predictions.
This is an excel sheet where you are provided with the test IDs and you have to submit your predictions in the “subscribed” column. Below are the steps to submit your predictions and generate score: a. Save the predictions on test.csv file in a new csv file.
b. Open the generated csv file, copy the predictions and paste them in the subscribed column of solution_checker.xlsx file. c. Your score will be generated automatically and will be shown in Your Accuracy Score column.

Owner
Hemanth Babu Muthineni
Learn>Explore>Innovate
Hemanth Babu Muthineni
HashDB is a community-sourced library of hashing algorithms used in malware.

HashDB HashDB is a community-sourced library of hashing algorithms used in malware. How To Use HashDB HashDB can be used as a stand alone hashing libr

OALabs 216 Jan 06, 2023
All Algorithms implemented in Python

The Algorithms - Python All algorithms implemented in Python (for education) These implementations are for learning purposes only. Therefore they may

The Algorithms 150.6k Jan 03, 2023
Data Model built using Logistic Regression Algorithm on Python.

Logistic-Regression Problem Statement: Your client is a retail banking institution. Term deposits are a major source of income for a bank. A term depo

Hemanth Babu Muthineni 0 Dec 25, 2021
🧬 Performant Evolutionary Algorithms For Python with Ray support

🧬 Performant Evolutionary Algorithms For Python with Ray support

Nathan 49 Oct 20, 2022
A Python program to easily solve the n-queens problem using min-conflicts algorithm

QueensProblem A program to easily solve the n-queens problem using min-conflicts algorithm Performances estimated with a sample of 1000 different rand

0 Oct 21, 2022
frePPLe - open source supply chain planning

frePPLe Open source supply chain planning FrePPLe is an easy-to-use and easy-to-implement open source advanced planning and scheduling tool for manufa

frePPLe 385 Jan 06, 2023
A simple python application to visualize sorting algorithms.

Visualize sorting algorithms A simple python application to visualize sorting algorithms. Sort Algorithms Name Function Name O( ) Bubble Sort bubble_s

Duc Tran 3 Apr 01, 2022
Nature-inspired algorithms are a very popular tool for solving optimization problems.

Nature-inspired algorithms are a very popular tool for solving optimization problems. Numerous variants of nature-inspired algorithms have been develo

NiaOrg 215 Dec 28, 2022
A custom prime algorithm, implementation, and performance code & review

Colander A custom prime algorithm, implementation, and performance code & review Pseudocode Algorithm 1. given a number of primes to find, the followi

Finn Lancaster 3 Dec 17, 2021
Python Package for Reflection Ultrasound Computed Tomography (RUCT) Delay And Sum (DAS) Algorithm

pyruct Python Package for Reflection Ultrasound Computed Tomography (RUCT) Delay And Sum (DAS) Algorithm The imaging setup is explained in these paper

Berkan Lafci 21 Dec 12, 2022
Gnat - GNAT is NOT Algorithmic Trading

GNAT GNAT is NOT Algorithmic Trading! GNAT is a financial tool with two goals in

Sher Shah 2 Jan 09, 2022
A Python implementation of Jerome Friedman's Multivariate Adaptive Regression Splines

py-earth A Python implementation of Jerome Friedman's Multivariate Adaptive Regression Splines algorithm, in the style of scikit-learn. The py-earth p

431 Dec 15, 2022
Python Client for Algorithmia Algorithms and Data API

Algorithmia Common Library (python) Python client library for accessing the Algorithmia API For API documentation, see the PythonDocs Algorithm Develo

Algorithmia 138 Oct 26, 2022
Fedlearn algorithm toolkit for researchers

Fedlearn algorithm toolkit for researchers

89 Nov 14, 2022
Dynamic Programming-Join Optimization Algorithm

DP-JOA Join optimization is the process of optimizing the joining, or combining, of two or more tables in a database. Here is a simple join optimizati

Haoze Zhou 3 Feb 03, 2022
FingerPy is a algorithm to measure, analyse and monitor heart-beat using only a video of the user's finger on a mobile cellphone camera.

FingerPy is a algorithm using python, scipy and fft to measure, analyse and monitor heart-beat using only a video of the user's finger on a m

Thiago S. Brasil 37 Oct 21, 2022
Genius Square puzzle solver in Python

Genius Square puzzle solver in Python

James 3 Dec 15, 2022
A Python Package for Portfolio Optimization using the Critical Line Algorithm

A Python Package for Portfolio Optimization using the Critical Line Algorithm

19 Oct 11, 2022
A fast, pure python implementation of the MuyGPs Gaussian process realization and training algorithm.

Fast implementation of the MuyGPs Gaussian process hyperparameter estimation algorithm MuyGPs is a GP estimation method that affords fast hyperparamet

Lawrence Livermore National Laboratory 13 Dec 02, 2022
Infomap is a network clustering algorithm based on the Map equation.

Infomap Infomap is a network clustering algorithm based on the Map equation. For detailed documentation, see mapequation.org/infomap. For a list of re

347 Dec 23, 2022