Practical-statistics-for-data-scientists - Code repository for O'Reilly book

Overview

Code repository

Practical Statistics for Data Scientists:

50+ Essential Concepts Using R and Python

by Peter Bruce, Andrew Bruce, and Peter Gedeck

Online

View the notebooks online: nbviewer

Excecute the notebooks in Binder: Binder

This can take some time if the binder environment needs to be rebuilt.

Other language versions

English:
Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python
2020: ISBN 149207294X
Google books, Amazon
Japanese:
データサイエンスのための統計学入門 第2版 ―予測、分類、統計モデリング、統計的機械学習とR/Pythonプログラミング
2020: ISBN 487311926X, Shinya Ohashi (supervised), Toshiaki Kurokawa (translated)
Google books, Amazon
German:
Praktische Statistik für Data Scientists: 50+ essenzielle Konzepte mit R und Python 
2021: ISBN 3960091532, Marcus Fraaß (Übersetzer)
Google books, Amazon
Korean:
Practical Statistics for Data Scientists: 데이터 과학을 위한 통계(2판) 2021: ISBN 9791162244180, Junyong Lee (translation)
Google books, Hanbit media
Polish:
Statystyka praktyczna w data science. 50 kluczowych zagadnien w jezykach R i Python 2021: ISBN 9788328374270
Google books, Amazon, Helion

See also

Setup R and Python environments

R

Run the following commands in R to install all required packages

if (!require(vioplot)) install.packages('vioplot')
if (!require(corrplot)) install.packages('corrplot')
if (!require(gmodels)) install.packages('gmodels')
if (!require(matrixStats)) install.packages('matrixStats')

if (!require(lmPerm)) install.packages('lmPerm')
if (!require(pwr)) install.packages('pwr')

if (!require(FNN)) install.packages('FNN')
if (!require(klaR)) install.packages('klaR')
if (!require(DMwR)) install.packages('DMwR')

if (!require(xgboost)) install.packages('xgboost')

if (!require(ellipse)) install.packages('ellipse')
if (!require(mclust)) install.packages('mclust')
if (!require(ca)) install.packages('ca')

Python

We recommend to use a conda environment to run the Python code.

conda create -n sfds python
conda activate sfds
conda env update -n sfds -f environment.yml
A minimal Python package that produces slice plots through h5m DAGMC geometry files

A minimal Python package that produces slice plots through h5m DAGMC geometry files Installation pip install dagmc_geometry_slice_plotter Python API U

Fusion Energy 4 Dec 02, 2022
Fast visualization of radar_scenes based on oleschum/radar_scenes

RadarScenes Tools About This python package provides fast visualization for the RadarScenes dataset. The Open GL based visualizer is smoother than ole

Henrik Söderlund 2 Dec 09, 2021
This is a super simple visualization toolbox (script) for transformer attention visualization ✌

Trans_attention_vis This is a super simple visualization toolbox (script) for transformer attention visualization ✌ 1. How to prepare your attention m

Mingyu Wang 3 Jul 09, 2022
Make scripted visualizations in blender

Scripted visualizations in blender The goal of this project is to script 3D scientific visualizations using blender. To achieve this, we aim to bring

Praneeth Namburi 10 Jun 01, 2022
3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK)

PyVista Deployment Build Status Metrics Citation License Community 3D plotting and mesh analysis through a streamlined interface for the Visualization

PyVista 1.6k Jan 08, 2023
This is a sorting visualizer made with Tkinter.

Sorting-Visualizer This is a sorting visualizer made with Tkinter. Make sure you've installed tkinter in your system to use this visualizer pip instal

Vishal Choubey 7 Jul 06, 2022
The Spectral Diagram (SD) is a new tool for the comparison of time series in the frequency domain

The Spectral Diagram (SD) is a new tool for the comparison of time series in the frequency domain. The SD provides a novel way to display the coherence function, power, amplitude, phase, and skill sc

Mabel 3 Oct 10, 2022
Visualizations for machine learning datasets

Introduction The facets project contains two visualizations for understanding and analyzing machine learning datasets: Facets Overview and Facets Dive

PAIR code 7.1k Jan 07, 2023
Certificate generating and sending system written in Python.

Certificate Generator & Sender How to use git clone https://github.com/saadhaxxan/Certificate-Generator-Sender.git cd Certificate-Generator-Sender Add

Saad Hassan 11 Dec 01, 2022
Because trello only have payed options to generate a RunUp chart, this solves that!

Trello Runup Chart Generator The basic concept of the project is that Corello is pay-to-use and want to use Trello To-Do/Doing/Done automation with gi

Rômulo Schiavon 1 Dec 21, 2021
Visualizations of linear algebra algorithms for people who want a deep understanding

Visualising algorithms on symmetric matrices Examples QR algorithm and LR algorithm Here, we have a GIF animation of an interactive visualisation of t

ogogmad 3 May 05, 2022
A deceptively simple plotting library for Streamlit

🍅 Plost A deceptively simple plotting library for Streamlit. Because you've been writing plots wrong all this time. Getting started pip install plost

Thiago Teixeira 192 Dec 29, 2022
Schema validation just got Pythonic

Schema validation just got Pythonic schema is a library for validating Python data structures, such as those obtained from config-files, forms, extern

Vladimir Keleshev 2.7k Jan 06, 2023
Example scripts for generating plots of Bohemian matrices

Bohemian Eigenvalue Plotting Examples This repository contains examples of generating plots of Bohemian eigenvalues. The examples in this repository a

Bohemian Matrices 5 Nov 12, 2022
Chem: collection of mostly python code for molecular visualization, QM/MM, FEP, etc

chem: collection of mostly python code for molecular visualization, QM/MM, FEP,

5 Sep 02, 2022
Graphical visualizer for spectralyze by Lauchmelder23

spectralyze visualizer Graphical visualizer for spectralyze by Lauchmelder23 Install Install matplotlib and ffmpeg. Put ffmpeg.exe in same folder as v

Matthew 1 Dec 21, 2021
Machine learning beginner to Kaggle competitor in 30 days. Non-coders welcome. The program starts Monday, August 2, and lasts four weeks. It's designed for people who want to learn machine learning.

30-Days-of-ML-Kaggle 🔥 About the Hands On Program 💻 Machine learning beginner → Kaggle competitor in 30 days. Non-coders welcome The program starts

Roja Achary 145 Jan 01, 2023
Here are my graphs for hw_02

Let's Have A Look At Some Graphs! Graph 1: State Mentions in Congressperson's Tweets on 10/01/2017 The graph below uses this data set to demonstrate h

7 Sep 02, 2022
clock_plot provides a simple way to visualize timeseries data, mapping 24 hours onto the 360 degrees of a polar plot

clock_plot clock_plot provides a simple way to visualize timeseries data mapping 24 hours onto the 360 degrees of a polar plot. For usage, please see

12 Aug 24, 2022