Make sankey, alluvial and sankey bump plots in ggplot

Overview

ggsankey

The goal of ggsankey is to make beautiful sankey, alluvial and sankey bump plots in ggplot2

Installation

You can install the development version of ggsankey from github with:

# install.packages("devtools")
devtools::install_github("davidsjoberg/ggsankey")

How does it work

Google defines a sankey as:

A sankey diagram is a visualization used to depict a flow from one set of values to another. The things being connected are called nodes and the connections are called links. Sankeys are best used when you want to show a many-to-many mapping between two domains or multiple paths through a set of stages.

To plot a sankey diagram with ggsankey each observation has a stage (called a discrete x-value in ggplot) and be part of a node. Furthermore, each observation needs to have instructions of which node it will belong to in the next stage. See the image below for some clarification.

Hence, to use geom_sankey the aestethics x, next_x, node and next_node are required. The last stage should point to NA. The aestethics fill and color will affect both nodes and flows.

To controll geometries (not changed by data) like fill, color, size, alpha etc for nodes and flows you can either choose to set a global value that affect both, or you can specify which one you want to alter. For example node.color = 'black' will only draw a black line around the nodes, but not the flows (links).

Example

geom_sankey

A basic sankey plot that shows how dimensions are linked.

library(ggsankey)
library(dplyr)
library(ggplot2)

df <- mtcars %>%
  make_long(cyl, vs, am, gear, carb)

ggplot(df, aes(x = x, 
               next_x = next_x, 
               node = node, 
               next_node = next_node,
               fill = factor(node))) +
  geom_sankey()

And by adding a little pimp.

  • Labels with geom_sankey_label which places labels in the center of nodes if given the same aestethics.

  • ggsankey also comes with custom minimalistic themes that can be used. Here I use theme_sankey.

ggplot(df, aes(x = x, next_x = next_x, node = node, next_node = next_node, fill = factor(node), label = node)) +
  geom_sankey(flow.alpha = .6,
              node.color = "gray30") +
  geom_sankey_label(size = 3, color = "white", fill = "gray40") +
  scale_fill_viridis_d() +
  theme_sankey(base_size = 18) +
  labs(x = NULL) +
  theme(legend.position = "none",
        plot.title = element_text(hjust = .5)) +
  ggtitle("Car features")

geom_alluvial

Alluvial plots are very similiar to sankey plots but have no spaces between nodes and start at y = 0 instead being centered around the x-axis.

ggplot(df, aes(x = x, next_x = next_x, node = node, next_node = next_node, fill = factor(node), label = node)) +
  geom_alluvial(flow.alpha = .6) +
  geom_alluvial_text(size = 3, color = "white") +
  scale_fill_viridis_d() +
  theme_alluvial(base_size = 18) +
  labs(x = NULL) +
  theme(legend.position = "none",
        plot.title = element_text(hjust = .5)) +
  ggtitle("Car features")

geom_sankey_bump

Sankey bump plots is mix between bump plots and sankey and mostly useful for time series. When a group becomes larger than another it bumps above it.

# install.packages("gapminder")
library(gapminder)

df <- gapminder %>%
  group_by(continent, year) %>%
  summarise(gdp = (sum_(pop * gdpPercap)/1e9) %>% round(0), .groups = "keep") %>%
  ungroup()

ggplot(df, aes(x = year,
               node = continent,
               fill = continent,
               value = gdp)) +
  geom_sankey_bump(space = 0, type = "alluvial", color = "transparent", smooth = 6) +
  scale_fill_viridis_d(option = "A", alpha = .8) +
  theme_sankey_bump(base_size = 16) +
  labs(x = NULL,
       y = "GDP ($ bn)",
       fill = NULL,
       color = NULL) +
  theme(legend.position = "bottom") +
  labs(title = "GDP development per continent")

Owner
David Sjoberg
Happy R user. Twitter: @davsjob
David Sjoberg
HM02: Visualizing Interesting Datasets

HM02: Visualizing Interesting Datasets This is a homework assignment for CSCI 40 class at Claremont McKenna College. Go to the project page to learn m

Qiaoling Chen 11 Oct 26, 2021
Backend app for visualizing CANedge log files in Grafana (directly from local disk or S3)

CANedge Grafana Backend - Visualize CAN/LIN Data in Dashboards This project enables easy dashboard visualization of log files from the CANedge CAN/LIN

13 Dec 15, 2022
Project coded in Python using Pandas to look at changes in chase% for batters facing a pitcher first time through the order vs. thrid time

Project coded in Python using Pandas to look at changes in chase% for batters facing a pitcher first time through the order vs. thrid time

Jason Kraynak 1 Jan 07, 2022
Function Plotter: a simple application with GUI to plot mathematical functions

Function-Plotter Function Plotter is a simple application with GUI to plot mathe

Mohamed Nabawe 4 Jan 03, 2022
Personal IMDB Graphs with Bokeh

Personal IMDB Graphs with Bokeh Do you like watching movies and also rate all of them in IMDB? Would you like to look at your IMDB stats based on your

2 Dec 15, 2021
The visual framework is designed on the idea of module and implemented by mixin method

Visual Framework The visual framework is designed on the idea of module and implemented by mixin method. Its biggest feature is the mixins module whic

LEFTeyes 9 Sep 19, 2022
A simple interpreted language for creating basic mathematical graphs.

graphr Introduction graphr is a small language written to create basic mathematical graphs. It is an interpreted language written in python and essent

2 Dec 26, 2021
finds grocery stores and stuff next to route (gpx)

Route-Report Route report is a command-line utility that can be used to locate points-of-interest near your planned route (gpx). The results are based

Clemens Mosig 5 Oct 10, 2022
Bar Chart of the number of Senators from each party who are up for election in the next three General Elections

Congress-Analysis Bar Chart of the number of Senators from each party who are up for election in the next three General Elections This bar chart shows

11 Oct 26, 2021
Painlessly create beautiful matplotlib plots.

Announcement Thank you to everyone who has used prettyplotlib and made it what it is today! Unfortunately, I no longer have the bandwidth to maintain

Olga Botvinnik 1.6k Jan 06, 2023
Lightweight data validation and adaptation Python library.

Valideer Lightweight data validation and adaptation library for Python. At a Glance: Supports both validation (check if a value is valid) and adaptati

Podio 258 Nov 22, 2022
Mapomatic - Automatic mapping of compiled circuits to low-noise sub-graphs

mapomatic Automatic mapping of compiled circuits to low-noise sub-graphs Overvie

Qiskit Partners 27 Nov 06, 2022
A shimmer pre-load component for Plotly Dash

dash-loading-shimmer A shimmer pre-load component for Plotly Dash Installation Get it with pip: pip install dash-loading-extras Or maybe you prefer Pi

Lucas Durand 4 Oct 12, 2022
RockNext is an Open Source extending ERPNext built on top of Frappe bringing enterprise ready utilization.

RockNext is an Open Source extending ERPNext built on top of Frappe bringing enterprise ready utilization.

Matheus Breguêz 13 Oct 12, 2022
Draw interactive NetworkX graphs with Altair

nx_altair Draw NetworkX graphs with Altair nx_altair offers a similar draw API to NetworkX but returns Altair Charts instead. If you'd like to contrib

Zachary Sailer 206 Dec 12, 2022
Streamlit-template - A streamlit app template based on streamlit-option-menu

streamlit-template A streamlit app template for geospatial applications based on

Qiusheng Wu 41 Dec 10, 2022
The official colors of the FAU as matplotlib/seaborn colormaps

FAU - Colors The official colors of Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) as matplotlib / seaborn colormaps. We support the old colo

Machine Learning and Data Analytics Lab FAU 9 Sep 05, 2022
Seismic Waveform Inversion Toolbox-1.0

Seismic Waveform Inversion Toolbox (SWIT-1.0)

Haipeng Li 98 Dec 29, 2022
A grammar of graphics for Python

plotnine Latest Release License DOI Build Status Coverage Documentation plotnine is an implementation of a grammar of graphics in Python, it is based

Hassan Kibirige 3.3k Jan 01, 2023
This project is an Algorithm Visualizer where a user can visualize algorithms like Bubble Sort, Merge Sort, Quick Sort, Selection Sort, Linear Search and Binary Search.

Algo_Visualizer This project is an Algorithm Visualizer where a user can visualize common algorithms like "Bubble Sort", "Merge Sort", "Quick Sort", "

Rahul 4 Feb 07, 2022