Interactive plotting for Pandas using Vega-Lite

Overview

pdvega: Vega-Lite plotting for Pandas Dataframes

build status Binder

pdvega is a library that allows you to quickly create interactive Vega-Lite plots from Pandas dataframes, using an API that is nearly identical to Pandas' built-in visualization tools, and designed for easy use within the Jupyter notebook.

Pandas currently has some basic plotting capabilities based on matplotlib. So, for example, you can create a scatter plot this way:

import numpy as np
import pandas as pd

df = pd.DataFrame({'x': np.random.randn(100), 'y': np.random.randn(100)})
df.plot.scatter(x='x', y='y')

matplotlib scatter output

The goal of pdvega is that any time you use dataframe.plot, you'll be able to replace it with dataframe.vgplot and instead get a similar (but prettier and more interactive) visualization output in Vega-Lite that you can easily export to share or customize:

import pdvega  # import adds vgplot attribute to pandas

df.vgplot.scatter(x='x', y='y')

vega-lite scatter output

The above image is a static screenshot of the interactive output; please see the Documentation for a full set of live usage examples.

Installation

You can get started with pdvega using pip:

$ pip install jupyter pdvega
$ jupyter nbextension install --sys-prefix --py vega3

The first line installs pdvega and its dependencies; the second installs the Jupyter extensions that allows plots to be displayed in the Jupyter notebook. For more information on installation and dependencies, see the Installation docs.

Why Vega-Lite?

When working with data, one of the biggest challenges is ensuring reproducibility of results. When you create a figure and export it to PNG or PDF, the data become baked-in to the rendering in a way that is difficult or impossible for others to extract. Vega and Vega-Lite change this: instead of packaging a figure by encoding its pixel values, they package a figure by describing, in a declarative manner, the relationship between data values and visual encodings through a JSON specification.

This means that the Vega-Lite figures produced by pdvega are portable: you can send someone the resulting JSON specification and they can choose whether to render it interactively online, convert it to a PNG or EPS for static publication, or even enhance and extend the figure to learn more about the data.

pdvega is a step in bringing this vision of figure portability and reproducibility to the Python world.

Relationship to Altair

Altair is a project that seeks to design an intuitive declarative API for generating Vega-Lite and Vega visualizations, using Pandas dataframes as data sources.

By contrast, pdvega seeks not to design new visualization APIs, but to use the existing DataFrame.plot visualization api and output visualizations with Vega/Vega-Lite rather than with matplotlib.

In this respect, pdvega is quite similar in spirit to the now-defunct mpld3 project, though the scope is smaller and (hopefully) much more manageable.

Owner
Altair
Declarative visualization in Python
Altair
Squidpy is a tool for the analysis and visualization of spatial molecular data.

Squidpy is a tool for the analysis and visualization of spatial molecular data. It builds on top of scanpy and anndata, from which it inherits modularity and scalability. It provides analysis tools t

Theis Lab 251 Dec 19, 2022
A python wrapper for creating and viewing effects for Matt Parker's christmas tree.

Christmas Tree Visualizer A python wrapper for creating and viewing effects for Matt Parker's christmas tree. Displays py or csv effect files and allo

4 Nov 22, 2022
Script to create an animated data visualisation for categorical timeseries data - GIF choropleth map with annotations.

choropleth_ldn Simple script to create a chloropleth map of London with categorical timeseries data. The script in main.py creates a gif of the most f

1 Oct 07, 2021
Simple plotting for Python. Python wrapper for D3xter - render charts in the browser with simple Python syntax.

PyDexter Simple plotting for Python. Python wrapper for D3xter - render charts in the browser with simple Python syntax. Setup $ pip install PyDexter

D3xter 31 Mar 06, 2021
demir.ai Dataset Operations

demir.ai Dataset Operations With this application, you can have the empty values (nan/null) deleted or filled before giving your dataset to machine le

Ahmet Furkan DEMIR 8 Nov 01, 2022
Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordcloud packages

Wikipedia WordCloud App Wikipedia WordCloud App generate Wikipedia word cloud art created using python's streamlit, matplotlib, wikipedia and wordclou

Siva Prakash 5 Jan 02, 2022
view cool stats related to your discord account.

DiscoStats cool statistics generated using your discord data. How? DiscoStats is not a service that breaks the Discord Terms of Service or Community G

ibrahim hisham 5 Jun 02, 2022
Generating interfaces(CLI, Qt GUI, Dash web app) from a Python function.

oneFace is a Python library for automatically generating multiple interfaces(CLI, GUI, WebGUI) from a callable Python object. oneFace is an easy way t

NaNg 31 Oct 21, 2022
Gaphas is the diagramming widget library for Python.

Gaphas Gaphas is the diagramming widget library for Python. Gaphas is a library that provides the user interface component (widget) for drawing diagra

Gaphor 144 Dec 14, 2022
Alternative layout visualizer for ZSA Moonlander keyboard

General info This is a keyboard layout visualizer for ZSA Moonlander keyboard (because I didn't find their Oryx or their training tool particularly us

10 Jul 19, 2022
Visualize the training curve from the *.csv file (tensorboard format).

Training-Curve-Vis Visualize the training curve from the *.csv file (tensorboard format). Feature Custom labels Curve smoothing Support for multiple c

Luckky 7 Feb 23, 2022
Generate graphs with NetworkX, natively visualize with D3.js and pywebview

webview_d3 This is some PoC code to render graphs created with NetworkX natively using D3.js and pywebview. The main benifit of this approac

byt3bl33d3r 68 Aug 18, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 111 Jan 03, 2023
Here are my graphs for hw_02

Let's Have A Look At Some Graphs! Graph 1: State Mentions in Congressperson's Tweets on 10/01/2017 The graph below uses this data set to demonstrate h

7 Sep 02, 2022
Rubrix is a free and open-source tool for exploring and iterating on data for artificial intelligence projects.

Open-source tool for exploring, labeling, and monitoring data for AI projects

Recognai 1.5k Jan 07, 2023
Render Jupyter notebook in the terminal

jut - JUpyter notebook Terminal viewer. The command line tool view the IPython/Jupyter notebook in the terminal. Install pip install jut Usage $jut --

Kracekumar 169 Dec 27, 2022
A program that analyzes data from inertia measurement units installed in aircraft and generates g-exceedance curves.

A program that analyzes data from inertia measurement units installed in aircraft and generates g-exceedance curves.

Pooya 1 Dec 02, 2021
Create artistic visualisations with your exercise data (Python version)

strava_py Create artistic visualisations with your exercise data (Python version). This is a port of the R strava package to Python. Examples Facets A

Marcus Volz 53 Dec 28, 2022
This is a web application to visualize various famous technical indicators and stocks tickers from user

Visualizing Technical Indicators Using Python and Plotly. Currently facing issues hosting the application on heroku. As soon as I am able to I'll like

4 Aug 04, 2022
Python support for Godot 🐍🐍🐍

Godot Python, because you want Python on Godot ! The goal of this project is to provide Python language support as a scripting module for the Godot ga

Emmanuel Leblond 1.4k Jan 04, 2023