Complete* list of autonomous driving related datasets

Overview

AD Datasets

Complete* and curated list of autonomous driving related datasets

Contributing

Contributions are very welcome! To add or update a dataset:

  • Update my-app/src/data.js: image

  • Make sure the dataset you add or edit has as many attributes as possible filled out:

    • Some attributes can only be found in associated papers
    • Some attributes can only be found in associated websites
    • Some attributes can only be found in the dataset itself
  • Send a pull request based on the created fork

Example Contribution

This is how the KITTI dataset is integrated into the website:

[...]
{
    id: "KITTI", //07.08. fertig
    href: "http://www.cvlibs.net/datasets/kitti/",
    size_hours: "6",
    size_storage: "180",
    frames: "",
    numberOfScenes: '50',
    samplingRate: "10",
    lengthOfScenes: "",
    sensors: "camera, lidar, gps/imu",
    sensorDetail: "2 greyscale cameras 1.4 MP, 2 color cameras 1.4 MP, 1 lidar 64 beams 360° 10Hz, 1 inertial and " +
        "GPS navigation system",
    benchmark: " stereo, optical flow, visual odometry, slam, 3d object detection, 3d object tracking",
    annotations: "3d bounding boxes",
    licensing: "Creative Commons Attribution-NonCommercial-ShareAlike 3.0",
    relatedDatasets: 'Semantic KITTI, KITTI-360',
    publishDate: new Date("2012-3").toISOString().split('T')[0],
    lastUpdate: new Date("2021-2").toISOString().split('T')[0],
    relatedPaper: "http://www.cvlibs.net/publications/Geiger2013IJRR.pdf",
    location: "Karlsruhe, Germany",
    rawData: "Yes"
},
[...]

* You're missing a dataset? Simply create a pull request ;)

Metadata

In the following, the scheme according to which the entries of the respective properties have resulted is illuminated.

Annotations

This property describes the types of annotations with which the data sets have been provided.

Benchmark

If benchmark challenges are explicitly listed with the data sets, they are specified here.

Frames

Frames states the number of frames in the data set. This includes training, test and validation data.

Last Update

If information has been provided on updates and their dates, they can be found in this category.

Licensing

In order to give the users an impression of the licenses of the data sets, information on them is already included in the tool. Location. This category lists the areas where the data sets have been recorded.

N° Scenes

N° Scenes shows the number of scenes contained in the data set and includes the training, testing and validation segments. In the case of video recordings, one recording corresponds to one scene. For data sets consisting of photos, a photo is the equivalent to a scene.

Publish Date

The initial publication date of the data set can be found under this category. If no explicit information on the date of publication of the data set could be found, the submission date of the paper related to the set was used at this point.

Related Data Sets

If data sets are related, the names of the related sets can be examined as well. Related data sets are, for example, those published by the same authors and building on one another.

Related Paper

This property solely consists of a link to the paper related to the data set. Sampling Rate [Hz]. The Sampling Rate [Hz] property specifies the sampling rate in Hertz at which the sensors in the data set work. However, this declaration is only made if all sensors are working at the same rate or, alternatively, if the sensors are being synchronized. Otherwise the field remains empty.

Scene Length [s]

This property describes the length of the scenes in seconds in the data set, provided all scenes have the same length. Otherwise no information is given. For example, if a data set has scenes with lengths between 30 and 60 seconds, no entry can be made. The background to this procedure is to maintain comparability and sortability.

Sensor Types

This category contains a rough description of the sensor types used. Sensor types are, for example, lidar or radar.

Sensors - Details

The Sensors - Detail category is an extension of the Sensor Types category. It includes a more detailed description of the sensors. The sensors are described in detail in terms of type and number, the frame rates they work with, the resolutions which sensors have and the horizontal field of view.

Size [GB]

The category Size [GB] describes the storage size of the data set in gigabytes.

Size [h]

The Size [h] property is the equivalent of the Size [GB] described above, but provides information on the size of the data set in hours.

Location

The place(s) the data was recorded at

rawData

Denotes if the dataset provides raw or processed data

Citation

If you find this code useful for your research, please cite our paper:

@article{Bogdoll_addatasets_2022_VEHITS,
    author    = {Bogdoll, Daniel and Schreyer, Felix, and Z\"{o}llner, J. Marius},
    title     = {{ad-datasets: a meta-collection of data sets for autonomous driving}},
    journal   = {arXiv preprint:2202.01909},
    year      = {2022},
}
Owner
Daniel Bogdoll
PhD student at FZI and KIT with a focus on deep learning and autonomous driving.
Daniel Bogdoll
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022
YKKDetector For Python

YKKDetector OpenCVを利用した機械学習データをもとに、VRChatのスクリーンショットなどからYKKさん(もとい「幽狐族のお姉様」)を検出できるソフトウェアです。 マニュアル こちらから実行環境のセットアップから解説する詳細なマニュアルをご覧いただけます。 ライセンス 本ソフトウェア

あんふぃとらいと 5 Dec 07, 2021
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Kordel K. France 2 Nov 14, 2022
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022