FastFace: Lightweight Face Detection Framework

Overview

FastFace: Lightweight Face Detection Framework

PyPI Documentation Status Downloads PyPI - Python Version PyPI - License

Easy-to-use face detection framework, developed using pytorch-lightning.
Checkout documentation for more.

Key Features

  • 🔥 Use pretrained models for inference with just few lines of code
  • 📈 Evaluate models on different datasets
  • 🛠️ Train and prototype new models, using pre-defined architectures
  • 🚀 Export trained models with ease, to use in production

Contents

Installation

From PyPI

pip install fastface -U

From source

git clone https://github.com/borhanMorphy/light-face-detection.git
cd light-face-detection
pip install .

Pretrained Models

Pretrained models can be accessable via fastface.FaceDetector.from_pretrained()

Name Architecture Configuration Parameters Model Size Link
lffd_original lffd original 2.3M 9mb weights
lffd_slim lffd slim 1.5M 6mb weights

Demo

Using package

")[:,:,:3] # build model with pretrained weights model = ff.FaceDetector.from_pretrained("lffd_original") # model: pl.LightningModule # get model summary model.summarize() # set model to eval mode model.eval() # [optional] move model to gpu model.to("cuda") # model inference preds, = model.predict(img, det_threshold=.8, iou_threshold=.4) # preds: { # 'boxes': [[xmin, ymin, xmax, ymax], ...], # 'scores':[, ...] # } ">
import fastface as ff
import imageio

# load image as RGB
img = imageio.imread("")[:,:,:3]

# build model with pretrained weights
model = ff.FaceDetector.from_pretrained("lffd_original")
# model: pl.LightningModule

# get model summary
model.summarize()

# set model to eval mode
model.eval()

# [optional] move model to gpu
model.to("cuda")

# model inference
preds, = model.predict(img, det_threshold=.8, iou_threshold=.4)
# preds: {
#    'boxes': [[xmin, ymin, xmax, ymax], ...],
#    'scores':[, ...]
# }

Using demo.py script

python demo.py --model lffd_original --device cuda --input 

sample output; alt text

Benchmarks

Following results are obtained with this repository

WIDER FACE

validation set results

Name Easy Medium Hard
lffd_original 0.893 0.866 0.758
lffd_slim 0.866 0.854 0.742

Tutorials

References

Citations

@inproceedings{LFFD,
    title={LFFD: A Light and Fast Face Detector for Edge Devices},
    author={He, Yonghao and Xu, Dezhong and Wu, Lifang and Jian, Meng and Xiang, Shiming and Pan, Chunhong},
    booktitle={arXiv:1904.10633},
    year={2019}
}
Owner
Ömer BORHAN
In a quest to explore AI.
Ömer BORHAN
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning (c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 20

Tianyu Han 7 Nov 22, 2022
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021