Official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis.

Overview

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis. Details are listed below:

  1. The config file for the experiments are under the directory of configs/.
  2. The pruning algorithms are in pruner/. Please note that:
    (1) fisher_diag_pruner.py implements C-OBD.
    (2) kfac_eigen_pruner.py implements EigenDamage.
    (3) kfac_full_pruner.py implements C-OBS.
    (4) kfac_OBD_F2.py implements kron-OBD.
    (5) kfac_OBS_F2.py implements kron-OBS.
    (6) kfac_eigen_svd_pruner.py implements EigenDamage Depthwise Separable.

Requirements

Python3.6, Pytorch 0.4.1

pip install https://download.pytorch.org/whl/cu90/torch-0.4.1-cp36-cp36m-linux_x86_64.whl
pip install torchvision
pip install tqdm
pip install tensorflow
pip install tensorboardX
pip install easydict
pip install scikit-tensor

Dataset

  1. Download tiny imagenet from "https://tiny-imagenet.herokuapp.com", and place it in ../data/tiny_imagenet. Please make sure there will be two folders, train and val, under the directory of ../data/tiny_imagenet. In either train or val, there will be 200 folders storing the images of each category.

  2. For cifar datasets, it will be automatically downloaded.

How to run?

1. Pretrain model

You can also download the pretrained model from https://drive.google.com/file/d/1hMxj6NUCE1RP9p_ZZpJPhryk2RPU4I-_/view?usp=sharing.

# for pretraining CIFAR10/CIFAR100
$ python main_pretrain.py --learning_rate 0.1 --weight_decay 0.0002 --dataset cifar10 --epoch 200

# for pretraining Tiny-ImageNet
$ python main_pretrain.py --learning_rate 0.1 --weight_decay 0.0002 --dataset tiny_imagenet --epoch 300

2. Pruning

# for pruning with EigenDamage, CIFAR10, VGG19 (one pass)
$ python main_prune.py --config ./configs/exp_for_cifar/cifar10/vgg19/one_pass/base/kfacf_eigen_base.json

# for pruning with EigenDamage, CIFAR100, VGG19
$ python main_prune.py --config ./configs/exp_for_cifar/cifar100/vgg19/one_pass/base/kfacf_eigen_base.json

# for pruning with EigenDamage, TinyImageNet, VGG19
$ python main_prune.py --config ./configs/exp_for_tiny_imagenet/tiny_imagenet/vgg19/one_pass/base/kfacf_eigen_base.json

# for pruning with EigenDamage + Depthwise separable, CIFAR100, VGG19
$ python main_prune_separable.py --config ./configs/exp_for_svd/cifar100/vgg19/one_pass/base/svd_eigendamage.json

Contact

If you have any questions or suggestions about the code or paper, please do not hesitate to contact with Chaoqi Wang([email protected] or [email protected]) and Guodong Zhang([email protected] or [email protected]).

Citation

To cite this work, please use

@InProceedings{wang2019eigen,
  title = 	 {{E}igen{D}amage: Structured Pruning in the {K}ronecker-Factored Eigenbasis},
  author = 	 {Wang, Chaoqi and Grosse, Roger and Fidler, Sanja and Zhang, Guodong},
  booktitle = 	 {Proceedings of the 36th International Conference on Machine Learning},
  pages = 	 {6566--6575},
  year = 	 {2019},
  volume = 	 {97},
  publisher = {PMLR},
  pdf = 	 {http://proceedings.mlr.press/v97/wang19g/wang19g.pdf},
  url = 	 {http://proceedings.mlr.press/v97/wang19g.html},
}

Owner
Chaoqi Wang
Machine learning
Chaoqi Wang
Bunch of optimizer implementations in PyTorch

Bunch of optimizer implementations in PyTorch

Hyeongchan Kim 76 Jan 03, 2023
PyTorch Extension Library of Optimized Scatter Operations

PyTorch Scatter Documentation This package consists of a small extension library of highly optimized sparse update (scatter and segment) operations fo

Matthias Fey 1.2k Jan 07, 2023
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
S3-plugin is a high performance PyTorch dataset library to efficiently access datasets stored in S3 buckets.

S3-plugin is a high performance PyTorch dataset library to efficiently access datasets stored in S3 buckets.

Amazon Web Services 138 Jan 03, 2023
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
Code snippets created for the PyTorch discussion board

PyTorch misc Collection of code snippets I've written for the PyTorch discussion board. All scripts were testes using the PyTorch 1.0 preview and torc

461 Dec 26, 2022
higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.

higher is a library providing support for higher-order optimization, e.g. through unrolled first-order optimization loops, of "meta" aspects of these

Facebook Research 1.5k Jan 03, 2023
A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch

Torchmeta A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch. Torchmeta contains popular meta-learning bench

Tristan Deleu 1.7k Jan 06, 2023
A pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch.

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022
You like pytorch? You like micrograd? You love tinygrad! ❤️

For something in between a pytorch and a karpathy/micrograd This may not be the best deep learning framework, but it is a deep learning framework. Due

George Hotz 9.7k Jan 05, 2023
Use Jax functions in Pytorch with DLPack

Use Jax functions in Pytorch with DLPack

Phil Wang 106 Dec 17, 2022
TorchShard is a lightweight engine for slicing a PyTorch tensor into parallel shards

TorchShard is a lightweight engine for slicing a PyTorch tensor into parallel shards. It can reduce GPU memory and scale up the training when the model has massive linear layers (e.g., ViT, BERT and

Kaiyu Yue 275 Nov 22, 2022
PyTorch implementation of TabNet paper : https://arxiv.org/pdf/1908.07442.pdf

README TabNet : Attentive Interpretable Tabular Learning This is a pyTorch implementation of Tabnet (Arik, S. O., & Pfister, T. (2019). TabNet: Attent

DreamQuark 2k Dec 27, 2022
Training RNNs as Fast as CNNs (https://arxiv.org/abs/1709.02755)

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
High-level batteries-included neural network training library for Pytorch

Pywick High-Level Training framework for Pytorch Pywick is a high-level Pytorch training framework that aims to get you up and running quickly with st

382 Dec 06, 2022
Pretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc.

Pretrained models for Pytorch (Work in progress) The goal of this repo is: to help to reproduce research papers results (transfer learning setups for

Remi 8.7k Dec 31, 2022
Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking"

model_based_energy_constrained_compression Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and

Haichuan Yang 16 Jun 15, 2022
Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Fangjun Kuang 119 Jan 03, 2023
High-fidelity performance metrics for generative models in PyTorch

High-fidelity performance metrics for generative models in PyTorch

Vikram Voleti 5 Oct 24, 2021