Respiratory Health Recommendation System

Overview

Respiratory-Health-Recommendation-System

Respiratory Health Recommendation System based on Air Quality Index Forecasts

This project aims to provide predictions and visualization of Air Quality Index across 100 counties in United States. Air quality index or AQI forecasts are important as it’s one of the most useful measure of air quality calculated from different pollutant concentrations in the air. Currently there are websites providing AQI forecasts but do not provide customized health recommendations. Using this product, Individuals can take appropriate preventive measures based on our recommendations and public authorities can use AQI forecasts to make decisions for policy making, urban planning and well-being of public health. The project is an end to end product that creates forecasts, provides visualizations, and delivers personalized health recommendations.

BigQuery database with an API was used to download EPA data as well as OpenWeatherMap API to compile the last 11 years of data for 6 key atmospheric pollutants which are CO, NO2, PM2.5, PM10, SO2, and O3.

Data was cleaned for missing values. First rolled up data to county level from site level through max aggregation and used time series interpolation to fill in the possible missing values. Afterwards, we were finally able to select 100 counties across US which ensured enough data to effectively allow for model building. The individual pollutants time series data was merged with temperature, pressure, relative humidity, and windspeed to take climate conditions into account as well. As the final data consists of 11 years of data for 100 counties, there are around half a million observation points with 20 columns.

VAR(vector autoregression) has been used which being a multivariate approach, should capture the complexities in the models. Through VAR, novel geospatial effects have also been incorporated in our models, for which we added 5 neighbor counties data for each county for every day.

Thus were created 100 models one for each county using VAR. Best models have been selected using optimum lag(number of past days data to be used into a model) based on AIC and BIC values which were then used to forecast respective pollutant concentration Data and ultimately AQI.

Results were evaluated using Root Mean Square Error values and found out that forecasts are within acceptable error range for most of the counties. VAR is definitely an improvement over ARIMA and further hyper parameter tuning in conjunction with the availability of more recent data will even further improve the quality of forecasts.

Based on our merged and forecast datasets, we have created interactive visualisations, to see the past 11 years trends, and forecasts. Users can choose from 1 to 6 pollutants, data range and counties as per requirement.

Owner
Abhishek Gawabde
Abhishek Gawabde
Graph Neural Networks for Recommender Systems

This repository contains code to train and test GNN models for recommendation, mainly using the Deep Graph Library (DGL).

217 Jan 04, 2023
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
Fast Python Collaborative Filtering for Implicit Feedback Datasets

Implicit Fast Python Collaborative Filtering for Implicit Datasets. This project provides fast Python implementations of several different popular rec

Ben Frederickson 3k Dec 31, 2022
This is our Tensorflow implementation for "Graph-based Embedding Smoothing for Sequential Recommendation" (GES) (TKDE, 2021).

Graph-based Embedding Smoothing (GES) This is our Tensorflow implementation for the paper: Tianyu Zhu, Leilei Sun, and Guoqing Chen. "Graph-based Embe

Tianyu Zhu 15 Nov 29, 2022
Bundle Graph Convolutional Network

Bundle Graph Convolutional Network This is our Pytorch implementation for the paper: Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin and Yong Li. Bun

55 Dec 25, 2022
An open source movie recommendation WebApp build by movie buffs and mathematicians that uses cosine similarity on the backend.

Movie Pundit Find your next flick by asking the (almost) all-knowing Movie Pundit Jump to Project Source » View Demo · Report Bug · Request Feature Ta

Kapil Pramod Deshmukh 8 May 28, 2022
A movie recommender which recommends the movies belonging to the genre that user has liked the most.

Content-Based-Movie-Recommender-System This model relies on the similarity of the items being recommended. (I have used Pandas and Numpy. However othe

Srinivasan K 0 Mar 31, 2022
Movie Recommender System

Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r

1 Jul 14, 2022
Movies/TV Recommender

recommender Movies/TV Recommender. Recommends Movies, TV Shows, Actors, Directors, Writers. Setup Create file API_KEY and paste your TMDB API key in i

Aviem Zur 3 Apr 22, 2022
This library intends to be a reference for recommendation engines in Python

Crab - A Python Library for Recommendation Engines

Marcel Caraciolo 85 Oct 04, 2021
Hierarchical Fashion Graph Network for Personalized Outfit Recommendation, SIGIR 2020

hierarchical_fashion_graph_network This is our Tensorflow implementation for the paper: Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, and

LI Xingchen 70 Dec 05, 2022
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in

420 Jan 04, 2023
Code for MB-GMN, SIGIR 2021

MB-GMN Code for MB-GMN, SIGIR 2021 For Beibei data, run python .\labcode.py For Tmall data, run python .\labcode.py --data tmall --rank 2 For IJCAI

32 Dec 04, 2022
It is a movie recommender web application which is developed using the Python.

Movie Recommendation 🍿 System Watch Tutorial for this project Source IMDB Movie 5000 Dataset Inspired from this original repository. Features Simple

Kushal Bhavsar 10 Dec 26, 2022
A Python scikit for building and analyzing recommender systems

Overview Surprise is a Python scikit for building and analyzing recommender systems that deal with explicit rating data. Surprise was designed with th

Nicolas Hug 5.7k Jan 01, 2023
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等

(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依

3.6k Dec 30, 2022
An Efficient and Effective Framework for Session-based Social Recommendation

SEFrame This repository contains the code for the paper "An Efficient and Effective Framework for Session-based Social Recommendation". Requirements P

Tianwen CHEN 23 Oct 26, 2022
Real time recommendation playground

concierge A continuous learning collaborative filter1 deployed with a light web server2. Distributed updates are live (real time pubsub + delta traini

Mark Essel 16 Nov 07, 2022
6002project-rl - An implemention of offline RL on recommender system

An implemention of offline RL on recommender system @author: misajie @update: 20

Tzay Lee 3 May 24, 2022