Respiratory Health Recommendation System

Overview

Respiratory-Health-Recommendation-System

Respiratory Health Recommendation System based on Air Quality Index Forecasts

This project aims to provide predictions and visualization of Air Quality Index across 100 counties in United States. Air quality index or AQI forecasts are important as it’s one of the most useful measure of air quality calculated from different pollutant concentrations in the air. Currently there are websites providing AQI forecasts but do not provide customized health recommendations. Using this product, Individuals can take appropriate preventive measures based on our recommendations and public authorities can use AQI forecasts to make decisions for policy making, urban planning and well-being of public health. The project is an end to end product that creates forecasts, provides visualizations, and delivers personalized health recommendations.

BigQuery database with an API was used to download EPA data as well as OpenWeatherMap API to compile the last 11 years of data for 6 key atmospheric pollutants which are CO, NO2, PM2.5, PM10, SO2, and O3.

Data was cleaned for missing values. First rolled up data to county level from site level through max aggregation and used time series interpolation to fill in the possible missing values. Afterwards, we were finally able to select 100 counties across US which ensured enough data to effectively allow for model building. The individual pollutants time series data was merged with temperature, pressure, relative humidity, and windspeed to take climate conditions into account as well. As the final data consists of 11 years of data for 100 counties, there are around half a million observation points with 20 columns.

VAR(vector autoregression) has been used which being a multivariate approach, should capture the complexities in the models. Through VAR, novel geospatial effects have also been incorporated in our models, for which we added 5 neighbor counties data for each county for every day.

Thus were created 100 models one for each county using VAR. Best models have been selected using optimum lag(number of past days data to be used into a model) based on AIC and BIC values which were then used to forecast respective pollutant concentration Data and ultimately AQI.

Results were evaluated using Root Mean Square Error values and found out that forecasts are within acceptable error range for most of the counties. VAR is definitely an improvement over ARIMA and further hyper parameter tuning in conjunction with the availability of more recent data will even further improve the quality of forecasts.

Based on our merged and forecast datasets, we have created interactive visualisations, to see the past 11 years trends, and forecasts. Users can choose from 1 to 6 pollutants, data range and counties as per requirement.

Owner
Abhishek Gawabde
Abhishek Gawabde
Bundle Graph Convolutional Network

Bundle Graph Convolutional Network This is our Pytorch implementation for the paper: Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin and Yong Li. Bun

55 Dec 25, 2022
The implementation of the submitted paper "Deep Multi-Behaviors Graph Network for Voucher Redemption Rate Prediction" in SIGKDD 2021 Applied Data Science Track.

DMBGN: Deep Multi-Behaviors Graph Networks for Voucher Redemption Rate Prediction The implementation of the accepted paper "Deep Multi-Behaviors Graph

10 Jul 12, 2022
This is our implementation of GHCF: Graph Heterogeneous Collaborative Filtering (AAAI 2021)

GHCF This is our implementation of the paper: Chong Chen, Weizhi Ma, Min Zhang, Zhaowei Wang, Xiuqiang He, Chenyang Wang, Yiqun Liu and Shaoping Ma. 2

Chong Chen 53 Dec 05, 2022
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.

Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f

Yaochen Zhu 14 Dec 11, 2022
A Library for Field-aware Factorization Machines

Table of Contents ================= - What is LIBFFM - Overfitting and Early Stopping - Installation - Data Format - Command Line Usage - Examples -

1.6k Dec 05, 2022
A Python implementation of LightFM, a hybrid recommendation algorithm.

LightFM Build status Linux OSX (OpenMP disabled) Windows (OpenMP disabled) LightFM is a Python implementation of a number of popular recommendation al

Lyst 4.2k Jan 02, 2023
RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

Jacopo Tagliabue 375 Dec 30, 2022
Hierarchical Fashion Graph Network for Personalized Outfit Recommendation, SIGIR 2020

hierarchical_fashion_graph_network This is our Tensorflow implementation for the paper: Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, and

LI Xingchen 70 Dec 05, 2022
Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021

Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN) This is our implementation for the paper: Su, Y., Zhang, R., Erfani, S., &

26 Nov 22, 2022
Reinforcement Knowledge Graph Reasoning for Explainable Recommendation

Reinforcement Knowledge Graph Reasoning for Explainable Recommendation This repository contains the source code of the SIGIR 2019 paper "Reinforcement

Yikun Xian 197 Dec 28, 2022
An Efficient and Effective Framework for Session-based Social Recommendation

SEFrame This repository contains the code for the paper "An Efficient and Effective Framework for Session-based Social Recommendation". Requirements P

Tianwen CHEN 23 Oct 26, 2022
An open source movie recommendation WebApp build by movie buffs and mathematicians that uses cosine similarity on the backend.

Movie Pundit Find your next flick by asking the (almost) all-knowing Movie Pundit Jump to Project Source » View Demo · Report Bug · Request Feature Ta

Kapil Pramod Deshmukh 8 May 28, 2022
Plex-recommender - Get movie recommendations based on your current PleX library

plex-recommender Description: Get movie/tv recommendations based on your current

5 Jul 19, 2022
Recommendation Systems for IBM Watson Studio platform

Recommendation-Systems-for-IBM-Watson-Studio-platform Project Overview In this project, I analyze the interactions that users have with articles on th

Milad Sadat-Mohammadi 1 Jan 21, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions

Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions This repository contains the code of the paper "Accuracy-Diversity Trade-of

2 Sep 16, 2022
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 04, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented.

Yu 1.4k Dec 27, 2022
Incorporating User Micro-behaviors and Item Knowledge 59 60 3 into Multi-task Learning for Session-based Recommendation

MKM-SR Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation Paper data and code This is the

ciecus 38 Dec 05, 2022
The source code for "Global Context Enhanced Graph Neural Network for Session-based Recommendation".

GCE-GNN Code This is the source code for SIGIR 2020 Paper: Global Context Enhanced Graph Neural Networks for Session-based Recommendation. Requirement

98 Dec 28, 2022