Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Related tags

Deep Learningcivsim
Overview

Civsim

Introduction

Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages:

perlin_noise==1.7
termcolor==1.1.0

Features

Currently civsim supports the following features:

  • Terrain generation using Perlin noise (including biomes)
  • Civilisation generation with different priorities and favoured terrain etc
  • Civilisation growth, expansion, stabilisation, destabilisation, collapse, and death
  • Successor states and breakaway states

Todo

  • Diplomacy between nations
  • Possibly some sort of ruler system to see national priorities change over time
  • Playing as a civ?
  • Expanding over water (Independent agents?)

Demo image

Comments
  • Civsim reworked

    Civsim reworked

    Modularized the game to be easier to expand and maintain Fixed bugs Added scsm for versioning Added setup.py with scripts to launch the game

    Changes:

    • Deleted unused conditions from .gitignore
    • Restructured folders as follow:
      • civsim main file removed to create a project structure oriented folder( civsim is the name of the project):
        • setup.py: inits game, loads config file and starts game_master instance)
        • game_master: controls world generation, civilization generation, game loop and display
        • scmversion: for automatic versioning (not finished configuring yet)
        • version: it takes the version from scmversion which is automatically generated when you run setup and install the project
        • config: game configuration parameters, logo, log url (in the future I plan to create a configuration class)
        • module civ:
          • civ: class with the class method born_civ, class variables civ_ptr (pointer) and the instance methods actions (previous name execute), registry(previous name update (reasoning kingdom do an annual registry so it's kinda a better name looking into what update does)) expand, collapse, disslove. Renamed symbol to emblem as kingdom, countries have emblems
          • constants
          • utils: scan method was not necessary anymore (scan functionality without delete was never used as you can check if something is inside a list directly so I renamed it to sweep the land and not it is only used for delete), updated findciv and renamed to find_civ
        • module world:
          • world: class with all the world and civilization grid stuff
          • constants
          • utils: messy_noice method
        • third rpgtools library was moved here and the .gitmodule command updated to point here
        • scripts
          • version: returns game version
          • run: runs the game (it support parameters like --debug, --seed and --age (--seed and --age are a proof of concept yet, looking into expanding debug and adding a profiler to measure times))
          • utils: argument parser class for commands
    • In order to install the game you only need to clone the repository and in the root folder GitHub\civsim just use the command pip install -e . . the game will proceed to install the directory package and submodules and all the needed third party libraries from the requirements.txt file. If the game is already installed it will uninstall the old version first and update dependencies if any. It is recommended to install the game inside a virtual env with the commands $python3 -m venv . $ . bin/activate or Scripts\activate.bat(window). This approach allows to use effectively absolute imports and it allows to upload civsim to pip in the future. Finally run the game with civsim-run.
    • Renamed readme.md to README.md following conventions (LICENSE and CONTRIBUTION are missing btw I can create an issue requesting that later)
    • Added game_master class which instantiate world and civilisation class, saving the instances into dictionaries, after seeding the first civilisations it continues with the while loop game until year is equal to age.
    • Improved player initialization concept with cpu=True variable by default
    • Images moved to docs so all the project information is together. CHANGELOG.md added (there is a program which creates automatic changelogs but I need to tune in yet)
    • Changes on civ class:
      • make_civ renamed to born_civ
      • renamed civletter to civ emblems
      • Fixed bugs on collapse, expand and dissolve methods (I can explain this in further details tomorrow) but random.choice was replaced by sample to avoid taking the same tile in the foor loop and there was inconsistencies with dead civilisations (collapse takes all the territories of a civilization but dissolve method was not called until the next iteration), finally civilisation was trying to be created (collapse and dissolve) but failing because no more civ emblems were available (for example if only emblems ZX are availables and civ A collapses with 5 territories and the 5 of them try to create a civ only the 3 first can do it, this could creates phantom expand method calls crashing the game)
    • Added reason why civ is collapsing for a nature disaster (placeholder I plan to expand it to a weather class and checking the biome before hand to avoid drought on snow biomes unless we have global warming ofc)
    • Optimized _priorities array generation: (in general two for loops should be avoided complexity O(n2) but same times is not possible) for priority array I could improve the performance using only one loop and a bit of magic

    This is a first draft I didn't have time to polish all the methods and optimize then but I tested the two game modes and I believe no bugs were left, the game was tested 20 or 30 times. Logs over all the game were improved to be more helpful and some try catch added for debugging. BTW I recommend using ipdb; ipdb.set_trace() for execution time debugging you just need to install it with pip.

    There seems to be lot of changes but mostly the code it the same just structured to be project friendly, added setup so people can just use pip install, optimizations and bugs related with the class oriented approach or legacy bugs. The project folder update was the most important thing to do as the project would quickly grows unmanageable without it and the class oriented concept is desired for games.

    I have a trello with ideas I can share with you, I think you have plenty of good ideas with they way you are developing the game, can't wait to see what you do with language. One of the first thing I would like to do is optimizing probably adding numpy, adding automatic testing, improve debug mode, finish automatic versioning, update README.md

    Name for all the method classes can be discussed if you prefer one over another

    I added your last changes to the civilisation class (language and name) but I disabled them (commented) because I got an error OSError: [E050] Can't find model 'en_core_web_sm'. It doesn't seem to be a Python package or a valid path to a data directory. in the file github\civsim\civsim\third\rpgtools\subject_verb_object_extract.py maybe you can point out to me if this is a bug or I did something wrong.

    Sorry for the long post feel free to check all the files and discuss doubts or improvements!

    opened by kafkaphoenix 6
  • Add a Makefile for convienience

    Add a Makefile for convienience

    Changes:

    Add Makefile

    • Easier to interact with project

    Modify Readme

    • Include instructions for using Makefile
    • Edit list of dependecies

    Add .gitignore

    • Force git to ignore virtual environment and unwanted python files
    opened by ghost 4
  • Restructured folder project and fixed imports

    Restructured folder project and fixed imports

    Restructured project to git standard imports should load only the method they are using powerbase -> base_power added missing license, contributing and changelog files Added constants for COMMONS_WORLD_PATH, LANG_STRUCT_PATH Simplified planet init logic

    opened by kafkaphoenix 1
  • Bug fixes, optimization and miscellanea

    Bug fixes, optimization and miscellanea

    • Added rpgtools to git ignore
    • Added spacy requirement to requirements.txt
    • Removed rpgtools.py as civsim.py is using the submodule now
    • Added ignore=dirty to .gitsubmodule to avoid submodule noise
    • Removed unused gitignore options
    • Optimized civilisation priorities generation
    • Moved in the update method scan method inside if territory check to avoid unnecessary calls
    • Added :.2f in the execute method for strings power, technology level and instability to avoid lot of decimals
    • make_civ now returns the instance
    • Fixed bug: collapse and dissolve methods were creating civilisations in the same spot overwriting previous one (choice(can repeat) > sample (can't repeat))
    • Fixed bug: dissolve was creating civilisations and expanding at the same time but sometimes it would crash when calling expand as the civ could not be created (max civ limit)
    • Fixed bug: all civ created by dissolve method will expand at the end to avoid one civ expanding over other candidate before being created
    opened by kafkaphoenix 1
  • Improvements

    Improvements

    Hi I think you should move civilization and world to their own classes using a "manager" class to store the instances and execute the actions you are currently doing in the main method, that way it would be easier to modularize the code and improve readability. I can help with that if you are interested. Cheers

    opened by kafkaphoenix 1
Releases(v0.8)
  • v0.8(May 24, 2021)

    Civilisations, settlements, history, and most of the modelling behaviour have been completed. Any further improvements will be strictly to improve the fidelity of the simulation (for example: sea-based expansion, diplomacy) rather than to improve the base output of the simulation itself.

    Source code(tar.gz)
    Source code(zip)
  • v0.1(May 9, 2021)

A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

Rasmus Haugaard 56 Nov 19, 2022
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Coder.AN 1 Mar 05, 2022
Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022
Code for Motion Representations for Articulated Animation paper

Motion Representations for Articulated Animation This repository contains the source code for the CVPR'2021 paper Motion Representations for Articulat

Snap Research 851 Jan 09, 2023
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
Multi-Scale Progressive Fusion Network for Single Image Deraining

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc

Kuijiang 128 Nov 21, 2022
null

DeformingThings4D dataset Video | Paper DeformingThings4D is an synthetic dataset containing 1,972 animation sequences spanning 31 categories of human

208 Jan 03, 2023
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022
Repository For Programmers Seeking a platform to show their skills

Programming-Nerds Repository For Programmers Seeking Pull Requests In hacktoberfest ❓ What's Hacktoberfest 2021? Hacktoberfest is the easiest way to g

42 Oct 29, 2022