Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Related tags

Deep Learningcivsim
Overview

Civsim

Introduction

Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages:

perlin_noise==1.7
termcolor==1.1.0

Features

Currently civsim supports the following features:

  • Terrain generation using Perlin noise (including biomes)
  • Civilisation generation with different priorities and favoured terrain etc
  • Civilisation growth, expansion, stabilisation, destabilisation, collapse, and death
  • Successor states and breakaway states

Todo

  • Diplomacy between nations
  • Possibly some sort of ruler system to see national priorities change over time
  • Playing as a civ?
  • Expanding over water (Independent agents?)

Demo image

Comments
  • Civsim reworked

    Civsim reworked

    Modularized the game to be easier to expand and maintain Fixed bugs Added scsm for versioning Added setup.py with scripts to launch the game

    Changes:

    • Deleted unused conditions from .gitignore
    • Restructured folders as follow:
      • civsim main file removed to create a project structure oriented folder( civsim is the name of the project):
        • setup.py: inits game, loads config file and starts game_master instance)
        • game_master: controls world generation, civilization generation, game loop and display
        • scmversion: for automatic versioning (not finished configuring yet)
        • version: it takes the version from scmversion which is automatically generated when you run setup and install the project
        • config: game configuration parameters, logo, log url (in the future I plan to create a configuration class)
        • module civ:
          • civ: class with the class method born_civ, class variables civ_ptr (pointer) and the instance methods actions (previous name execute), registry(previous name update (reasoning kingdom do an annual registry so it's kinda a better name looking into what update does)) expand, collapse, disslove. Renamed symbol to emblem as kingdom, countries have emblems
          • constants
          • utils: scan method was not necessary anymore (scan functionality without delete was never used as you can check if something is inside a list directly so I renamed it to sweep the land and not it is only used for delete), updated findciv and renamed to find_civ
        • module world:
          • world: class with all the world and civilization grid stuff
          • constants
          • utils: messy_noice method
        • third rpgtools library was moved here and the .gitmodule command updated to point here
        • scripts
          • version: returns game version
          • run: runs the game (it support parameters like --debug, --seed and --age (--seed and --age are a proof of concept yet, looking into expanding debug and adding a profiler to measure times))
          • utils: argument parser class for commands
    • In order to install the game you only need to clone the repository and in the root folder GitHub\civsim just use the command pip install -e . . the game will proceed to install the directory package and submodules and all the needed third party libraries from the requirements.txt file. If the game is already installed it will uninstall the old version first and update dependencies if any. It is recommended to install the game inside a virtual env with the commands $python3 -m venv . $ . bin/activate or Scripts\activate.bat(window). This approach allows to use effectively absolute imports and it allows to upload civsim to pip in the future. Finally run the game with civsim-run.
    • Renamed readme.md to README.md following conventions (LICENSE and CONTRIBUTION are missing btw I can create an issue requesting that later)
    • Added game_master class which instantiate world and civilisation class, saving the instances into dictionaries, after seeding the first civilisations it continues with the while loop game until year is equal to age.
    • Improved player initialization concept with cpu=True variable by default
    • Images moved to docs so all the project information is together. CHANGELOG.md added (there is a program which creates automatic changelogs but I need to tune in yet)
    • Changes on civ class:
      • make_civ renamed to born_civ
      • renamed civletter to civ emblems
      • Fixed bugs on collapse, expand and dissolve methods (I can explain this in further details tomorrow) but random.choice was replaced by sample to avoid taking the same tile in the foor loop and there was inconsistencies with dead civilisations (collapse takes all the territories of a civilization but dissolve method was not called until the next iteration), finally civilisation was trying to be created (collapse and dissolve) but failing because no more civ emblems were available (for example if only emblems ZX are availables and civ A collapses with 5 territories and the 5 of them try to create a civ only the 3 first can do it, this could creates phantom expand method calls crashing the game)
    • Added reason why civ is collapsing for a nature disaster (placeholder I plan to expand it to a weather class and checking the biome before hand to avoid drought on snow biomes unless we have global warming ofc)
    • Optimized _priorities array generation: (in general two for loops should be avoided complexity O(n2) but same times is not possible) for priority array I could improve the performance using only one loop and a bit of magic

    This is a first draft I didn't have time to polish all the methods and optimize then but I tested the two game modes and I believe no bugs were left, the game was tested 20 or 30 times. Logs over all the game were improved to be more helpful and some try catch added for debugging. BTW I recommend using ipdb; ipdb.set_trace() for execution time debugging you just need to install it with pip.

    There seems to be lot of changes but mostly the code it the same just structured to be project friendly, added setup so people can just use pip install, optimizations and bugs related with the class oriented approach or legacy bugs. The project folder update was the most important thing to do as the project would quickly grows unmanageable without it and the class oriented concept is desired for games.

    I have a trello with ideas I can share with you, I think you have plenty of good ideas with they way you are developing the game, can't wait to see what you do with language. One of the first thing I would like to do is optimizing probably adding numpy, adding automatic testing, improve debug mode, finish automatic versioning, update README.md

    Name for all the method classes can be discussed if you prefer one over another

    I added your last changes to the civilisation class (language and name) but I disabled them (commented) because I got an error OSError: [E050] Can't find model 'en_core_web_sm'. It doesn't seem to be a Python package or a valid path to a data directory. in the file github\civsim\civsim\third\rpgtools\subject_verb_object_extract.py maybe you can point out to me if this is a bug or I did something wrong.

    Sorry for the long post feel free to check all the files and discuss doubts or improvements!

    opened by kafkaphoenix 6
  • Add a Makefile for convienience

    Add a Makefile for convienience

    Changes:

    Add Makefile

    • Easier to interact with project

    Modify Readme

    • Include instructions for using Makefile
    • Edit list of dependecies

    Add .gitignore

    • Force git to ignore virtual environment and unwanted python files
    opened by ghost 4
  • Restructured folder project and fixed imports

    Restructured folder project and fixed imports

    Restructured project to git standard imports should load only the method they are using powerbase -> base_power added missing license, contributing and changelog files Added constants for COMMONS_WORLD_PATH, LANG_STRUCT_PATH Simplified planet init logic

    opened by kafkaphoenix 1
  • Bug fixes, optimization and miscellanea

    Bug fixes, optimization and miscellanea

    • Added rpgtools to git ignore
    • Added spacy requirement to requirements.txt
    • Removed rpgtools.py as civsim.py is using the submodule now
    • Added ignore=dirty to .gitsubmodule to avoid submodule noise
    • Removed unused gitignore options
    • Optimized civilisation priorities generation
    • Moved in the update method scan method inside if territory check to avoid unnecessary calls
    • Added :.2f in the execute method for strings power, technology level and instability to avoid lot of decimals
    • make_civ now returns the instance
    • Fixed bug: collapse and dissolve methods were creating civilisations in the same spot overwriting previous one (choice(can repeat) > sample (can't repeat))
    • Fixed bug: dissolve was creating civilisations and expanding at the same time but sometimes it would crash when calling expand as the civ could not be created (max civ limit)
    • Fixed bug: all civ created by dissolve method will expand at the end to avoid one civ expanding over other candidate before being created
    opened by kafkaphoenix 1
  • Improvements

    Improvements

    Hi I think you should move civilization and world to their own classes using a "manager" class to store the instances and execute the actions you are currently doing in the main method, that way it would be easier to modularize the code and improve readability. I can help with that if you are interested. Cheers

    opened by kafkaphoenix 1
Releases(v0.8)
  • v0.8(May 24, 2021)

    Civilisations, settlements, history, and most of the modelling behaviour have been completed. Any further improvements will be strictly to improve the fidelity of the simulation (for example: sea-based expansion, diplomacy) rather than to improve the base output of the simulation itself.

    Source code(tar.gz)
    Source code(zip)
  • v0.1(May 9, 2021)

Corruption Invariant Learning for Re-identification

Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS

Minghui Chen 73 Dec 08, 2022
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network

KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated

XingBowen 4 May 20, 2022
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs » View Demo · Report Bug · Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022