Cache-house - Caching tool for python, working with Redis single instance and Redis cluster mode

Overview

Caching tool for python, working with Redis single instance and Redis cluster mode

PyPi link

Installation

 $ pip install cache-house 

or with poetry

poetry add cache-house

Quick Start


cache decorator work with async and sync functions

from cache_house.backends.redis_backend import RedisCache
from cache_house.cache import cache
import asyncio

RedisCache.init()

@cache() # default expire time is 180 seconds
async def test_cache(a: int,b: int):
    print("async cached")
    return [a,b]

@cache()
def test_cache_1(a: int, b: int):
    print("cached")
    return [a, b]


if __name__ == "__main__":
    print(test_cache_1(3,4))
    print(asyncio.run(test_cache(1,2)))

Check stored cache key

➜ $ rdcli KEYS "*"
1) cachehouse:main:8f65aed1010f0062a783c83eb430aca0
2) cachehouse:main:f665833ea64e4fc32653df794257ca06

Setup Redis cache instance


You can pass all redis-py arguments to RedisCache.init method and additional arguments :

def RedisCache.init(
        host: str = "localhost",
        port: int = 6379,
        encoder: Callable[..., Any] = ...,
        decoder: Callable[..., Any] = ...,
        namespace: str = ...,
        key_prefix: str = ...,
        key_builder: Callable[..., Any] = ...,
        password: str = ...,
        db: int = ...,
        **kwargs
    )

or you can set your own encoder and decoder functions

from cache_house.backends.redis_backend import RedisCache

def custom_encoder(data):
    return json.dumps(data)

def custom_decoder(data):
    return json.loads(data)

RedisCache.init(encoder=custom_encoder, decoder=custom_decoder)

Default encoder and decoder is pickle module.


Setup Redis Cluster cache instance


All manipulation with RedisCache same with a RedisClusterCache

from cache_house.backends.redis_cluster_backend import RedisClusterCache
from cache_house.cache import cache

RedisClusterCache.init()

@cache()
async def test_cache(a: int,b: int):
    print("cached")
    return [a,b]
def RedisClusterCache.init(
        cls,
        host="localhost",
        port=6379,
        encoder: Callable[..., Any] = pickle_encoder,
        decoder: Callable[..., Any] = pickle_decoder,
        startup_nodes=None,
        cluster_error_retry_attempts: int = 3,
        require_full_coverage: bool = True,
        skip_full_coverage_check: bool = False,
        reinitialize_steps: int = 10,
        read_from_replicas: bool = False,
        namespace: str = DEFAULT_NAMESPACE,
        key_prefix: str = DEFAULT_PREFIX,
        key_builder: Callable[..., Any] = key_builder,
        **kwargs,
    )

You can set expire time (seconds) , namespace and key prefix in cache decorator


@cache(expire=30, namespace="app", key_prefix="test") 
async def test_cache(a: int,b: int):
    print("cached")
    return [a,b]


if __name__ == "__main__":
    print(asyncio.run(test_cache(1,2)))

Check stored cache

rdcli KEYS "*"
1) test:app:f665833ea64e4fc32653df794257ca06

If your function works with non-standard data types, you can pass custom encoder and decoder functions to the cache decorator.


import asyncio
import json
from cache_house.backends.redis_backend import RedisCache
from cache_house.cache import cache

RedisCache.init()

def custom_encoder(data):
    return json.dumps(data)

def custom_decoder(data):
    return json.loads(data)

@cache(expire=30, encoder=custom_encoder, decoder=custom_decoder, namespace="custom")
async def test_cache(a: int, b: int):
    print("async cached")
    return {"a": a, "b": b}


@cache(expire=30)
def test_cache_1(a: int, b: int):
    print("cached")
    return [a, b]


if __name__ == "__main__":
    print(asyncio.run(test_cache(1, 2)))
    print(test_cache_1(3, 4))

Check stored cache

rdcli KEYS "*"
1) cachehouse:main:8f65aed1010f0062a783c83eb430aca0
2) cachehouse:custom:f665833ea64e4fc32653df794257ca06

All examples works fine with Redis Cluster and single Redis instance.


Contributing

Free to open issue and send PR

cache-house supports Python >= 3.7

You might also like...
Qwerkey is a social media platform for connecting and learning more about mechanical keyboards built on React and Redux in the frontend and Flask in the backend on top of a PostgreSQL database.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

A RESTful API for creating and monitoring resource components of a hypothetical build system. Built with FastAPI and pydantic. Complete with testing and CI.
A RESTful API for creating and monitoring resource components of a hypothetical build system. Built with FastAPI and pydantic. Complete with testing and CI.

diskspace-monitor-CRUD Background The build system is part of a large environment with a multitude of different components. Many of the components hav

Cookiecutter API for creating Custom Skills for Azure Search using Python and Docker

cookiecutter-spacy-fastapi Python cookiecutter API for quick deployments of spaCy models with FastAPI Azure Search The API interface is compatible wit

Docker image with Uvicorn managed by Gunicorn for high-performance FastAPI web applications in Python 3.6 and above with performance auto-tuning. Optionally with Alpine Linux.
Docker image with Uvicorn managed by Gunicorn for high-performance FastAPI web applications in Python 3.6 and above with performance auto-tuning. Optionally with Alpine Linux.

Supported tags and respective Dockerfile links python3.8, latest (Dockerfile) python3.7, (Dockerfile) python3.6 (Dockerfile) python3.8-slim (Dockerfil

 Turns your Python functions into microservices with web API, interactive GUI, and more.
Turns your Python functions into microservices with web API, interactive GUI, and more.

Instantly turn your Python functions into production-ready microservices. Deploy and access your services via HTTP API or interactive UI. Seamlessly export your services into portable, shareable, and executable files or Docker images.

Mixer -- Is a fixtures replacement. Supported Django, Flask, SqlAlchemy and custom python objects.

The Mixer is a helper to generate instances of Django or SQLAlchemy models. It's useful for testing and fixture replacement. Fast and convenient test-

Beyonic API Python official client library simplified examples using Flask, Django and Fast API.

Beyonic API Python Examples. The beyonic APIs Doc Reference: https://apidocs.beyonic.com/ To start using the Beyonic API Python API, you need to start

API using python and Fastapi framework

Welcome 👋 CFCApi is a API DEVELOPMENT PROJECT UNDER CODE FOR COMMUNITY ! Project Walkthrough 🚀 CFCApi run on Python using FASTapi Framework Docs The

Restful Api developed with Flask using Prometheus and Grafana for monitoring and containerization with Docker :rocket:
Restful Api developed with Flask using Prometheus and Grafana for monitoring and containerization with Docker :rocket:

Hephaestus 🚀 In Greek mythology, Hephaestus was either the son of Zeus and Hera or he was Hera's parthenogenous child. ... As a smithing god, Hephaes

Releases(v0.2.2)
FastAPI application and service structure for a more maintainable codebase

Abstracting FastAPI Services See this article for more information: https://camillovisini.com/article/abstracting-fastapi-services/ Poetry poetry inst

Camillo Visini 309 Jan 04, 2023
Beyonic API Python official client library simplified examples using Flask, Django and Fast API.

Beyonic API Python Examples. The beyonic APIs Doc Reference: https://apidocs.beyonic.com/ To start using the Beyonic API Python API, you need to start

Harun Mbaabu Mwenda 46 Sep 01, 2022
A simple Redis Streams backed Chat app using Websockets, Asyncio and FastAPI/Starlette.

redis-streams-fastapi-chat A simple demo of Redis Streams backed Chat app using Websockets, Python Asyncio and FastAPI/Starlette. Requires Python vers

ludwig404 135 Dec 19, 2022
Qwerkey is a social media platform for connecting and learning more about mechanical keyboards built on React and Redux in the frontend and Flask in the backend on top of a PostgreSQL database.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

Peter Mai 22 Dec 20, 2022
An extension library for FastAPI framework

FastLab An extension library for FastAPI framework Features Logging Models Utils Routers Installation use pip to install the package: pip install fast

Tezign Lab 10 Jul 11, 2022
Voucher FastAPI

Voucher-API Requirement Docker Installed on system Libraries Pandas Psycopg2 FastAPI PyArrow Pydantic Uvicorn How to run Download the repo on your sys

Hassan Munir 1 Jan 26, 2022
Reusable utilities for FastAPI

Reusable utilities for FastAPI Documentation: https://fastapi-utils.davidmontague.xyz Source Code: https://github.com/dmontagu/fastapi-utils FastAPI i

David Montague 1.3k Jan 04, 2023
Redis-based rate-limiting for FastAPI

Redis-based rate-limiting for FastAPI

Glib 6 Nov 14, 2022
Opinionated authorization package for FastAPI

FastAPI Authorization Installation pip install fastapi-authorization Usage Currently, there are two models available: RBAC: Role-based Access Control

Marcelo Trylesinski 18 Jul 04, 2022
✨️🐍 SPARQL endpoint built with RDFLib to serve machine learning models, or any other logic implemented in Python

✨ SPARQL endpoint for RDFLib rdflib-endpoint is a SPARQL endpoint based on a RDFLib Graph to easily serve machine learning models, or any other logic

Vincent Emonet 27 Dec 19, 2022
FastAPI Auth Starter Project

This is a template for FastAPI that comes with authentication preconfigured.

Oluwaseyifunmi Oyefeso 6 Nov 13, 2022
Ready-to-use and customizable users management for FastAPI

FastAPI Users Ready-to-use and customizable users management for FastAPI Documentation: https://fastapi-users.github.io/fastapi-users/ Source Code: ht

FastAPI Users 2.3k Dec 30, 2022
Run your jupyter notebooks as a REST API endpoint. This isn't a jupyter server but rather just a way to run your notebooks as a REST API Endpoint.

Jupter Notebook REST API Run your jupyter notebooks as a REST API endpoint. This isn't a jupyter server but rather just a way to run your notebooks as

Invictify 54 Nov 04, 2022
SuperSaaSFastAPI - Python SaaS Boilerplate for building Software-as-Service (SAAS) apps with FastAPI, Vue.js & Tailwind

Python SaaS Boilerplate for building Software-as-Service (SAAS) apps with FastAP

Rudy Bekker 31 Jan 10, 2023
Adds integration of the Chameleon template language to FastAPI.

fastapi-chameleon Adds integration of the Chameleon template language to FastAPI. If you are interested in Jinja instead, see the sister project: gith

Michael Kennedy 124 Nov 26, 2022
Feature rich robust FastAPI template.

Flexible and Lightweight general-purpose template for FastAPI. Usage ⚠️ Git, Python and Poetry must be installed and accessible ⚠️ Poetry version must

Pavel Kirilin 588 Jan 04, 2023
FastAPI Socket.io with first-class documentation using AsyncAPI

fastapi-sio Socket.io FastAPI integration library with first-class documentation using AsyncAPI The usage of the library is very familiar to the exper

Marián Hlaváč 9 Jan 02, 2023
FastAPI client generator

FastAPI-based API Client Generator Generate a mypy- and IDE-friendly API client from an OpenAPI spec. Sync and async interfaces are both available Com

David Montague 283 Jan 04, 2023
MS Graph API authentication example with Fast API

MS Graph API authentication example with Fast API What it is & does This is a simple python service/webapp, using FastAPI with server side rendering,

Andrew Hart 4 Aug 11, 2022
fastapi-cache is a tool to cache fastapi response and function result, with backends support redis and memcached.

fastapi-cache Introduction fastapi-cache is a tool to cache fastapi response and function result, with backends support redis, memcache, and dynamodb.

long2ice 551 Jan 08, 2023