Cache-house - Caching tool for python, working with Redis single instance and Redis cluster mode

Overview

Caching tool for python, working with Redis single instance and Redis cluster mode

PyPi link

Installation

 $ pip install cache-house 

or with poetry

poetry add cache-house

Quick Start


cache decorator work with async and sync functions

from cache_house.backends.redis_backend import RedisCache
from cache_house.cache import cache
import asyncio

RedisCache.init()

@cache() # default expire time is 180 seconds
async def test_cache(a: int,b: int):
    print("async cached")
    return [a,b]

@cache()
def test_cache_1(a: int, b: int):
    print("cached")
    return [a, b]


if __name__ == "__main__":
    print(test_cache_1(3,4))
    print(asyncio.run(test_cache(1,2)))

Check stored cache key

➜ $ rdcli KEYS "*"
1) cachehouse:main:8f65aed1010f0062a783c83eb430aca0
2) cachehouse:main:f665833ea64e4fc32653df794257ca06

Setup Redis cache instance


You can pass all redis-py arguments to RedisCache.init method and additional arguments :

def RedisCache.init(
        host: str = "localhost",
        port: int = 6379,
        encoder: Callable[..., Any] = ...,
        decoder: Callable[..., Any] = ...,
        namespace: str = ...,
        key_prefix: str = ...,
        key_builder: Callable[..., Any] = ...,
        password: str = ...,
        db: int = ...,
        **kwargs
    )

or you can set your own encoder and decoder functions

from cache_house.backends.redis_backend import RedisCache

def custom_encoder(data):
    return json.dumps(data)

def custom_decoder(data):
    return json.loads(data)

RedisCache.init(encoder=custom_encoder, decoder=custom_decoder)

Default encoder and decoder is pickle module.


Setup Redis Cluster cache instance


All manipulation with RedisCache same with a RedisClusterCache

from cache_house.backends.redis_cluster_backend import RedisClusterCache
from cache_house.cache import cache

RedisClusterCache.init()

@cache()
async def test_cache(a: int,b: int):
    print("cached")
    return [a,b]
def RedisClusterCache.init(
        cls,
        host="localhost",
        port=6379,
        encoder: Callable[..., Any] = pickle_encoder,
        decoder: Callable[..., Any] = pickle_decoder,
        startup_nodes=None,
        cluster_error_retry_attempts: int = 3,
        require_full_coverage: bool = True,
        skip_full_coverage_check: bool = False,
        reinitialize_steps: int = 10,
        read_from_replicas: bool = False,
        namespace: str = DEFAULT_NAMESPACE,
        key_prefix: str = DEFAULT_PREFIX,
        key_builder: Callable[..., Any] = key_builder,
        **kwargs,
    )

You can set expire time (seconds) , namespace and key prefix in cache decorator


@cache(expire=30, namespace="app", key_prefix="test") 
async def test_cache(a: int,b: int):
    print("cached")
    return [a,b]


if __name__ == "__main__":
    print(asyncio.run(test_cache(1,2)))

Check stored cache

rdcli KEYS "*"
1) test:app:f665833ea64e4fc32653df794257ca06

If your function works with non-standard data types, you can pass custom encoder and decoder functions to the cache decorator.


import asyncio
import json
from cache_house.backends.redis_backend import RedisCache
from cache_house.cache import cache

RedisCache.init()

def custom_encoder(data):
    return json.dumps(data)

def custom_decoder(data):
    return json.loads(data)

@cache(expire=30, encoder=custom_encoder, decoder=custom_decoder, namespace="custom")
async def test_cache(a: int, b: int):
    print("async cached")
    return {"a": a, "b": b}


@cache(expire=30)
def test_cache_1(a: int, b: int):
    print("cached")
    return [a, b]


if __name__ == "__main__":
    print(asyncio.run(test_cache(1, 2)))
    print(test_cache_1(3, 4))

Check stored cache

rdcli KEYS "*"
1) cachehouse:main:8f65aed1010f0062a783c83eb430aca0
2) cachehouse:custom:f665833ea64e4fc32653df794257ca06

All examples works fine with Redis Cluster and single Redis instance.


Contributing

Free to open issue and send PR

cache-house supports Python >= 3.7

You might also like...
Qwerkey is a social media platform for connecting and learning more about mechanical keyboards built on React and Redux in the frontend and Flask in the backend on top of a PostgreSQL database.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

A RESTful API for creating and monitoring resource components of a hypothetical build system. Built with FastAPI and pydantic. Complete with testing and CI.
A RESTful API for creating and monitoring resource components of a hypothetical build system. Built with FastAPI and pydantic. Complete with testing and CI.

diskspace-monitor-CRUD Background The build system is part of a large environment with a multitude of different components. Many of the components hav

Cookiecutter API for creating Custom Skills for Azure Search using Python and Docker

cookiecutter-spacy-fastapi Python cookiecutter API for quick deployments of spaCy models with FastAPI Azure Search The API interface is compatible wit

Docker image with Uvicorn managed by Gunicorn for high-performance FastAPI web applications in Python 3.6 and above with performance auto-tuning. Optionally with Alpine Linux.
Docker image with Uvicorn managed by Gunicorn for high-performance FastAPI web applications in Python 3.6 and above with performance auto-tuning. Optionally with Alpine Linux.

Supported tags and respective Dockerfile links python3.8, latest (Dockerfile) python3.7, (Dockerfile) python3.6 (Dockerfile) python3.8-slim (Dockerfil

 Turns your Python functions into microservices with web API, interactive GUI, and more.
Turns your Python functions into microservices with web API, interactive GUI, and more.

Instantly turn your Python functions into production-ready microservices. Deploy and access your services via HTTP API or interactive UI. Seamlessly export your services into portable, shareable, and executable files or Docker images.

Mixer -- Is a fixtures replacement. Supported Django, Flask, SqlAlchemy and custom python objects.

The Mixer is a helper to generate instances of Django or SQLAlchemy models. It's useful for testing and fixture replacement. Fast and convenient test-

Beyonic API Python official client library simplified examples using Flask, Django and Fast API.

Beyonic API Python Examples. The beyonic APIs Doc Reference: https://apidocs.beyonic.com/ To start using the Beyonic API Python API, you need to start

API using python and Fastapi framework

Welcome πŸ‘‹ CFCApi is a API DEVELOPMENT PROJECT UNDER CODE FOR COMMUNITY ! Project Walkthrough πŸš€ CFCApi run on Python using FASTapi Framework Docs The

Restful Api developed with Flask using Prometheus and Grafana for monitoring and containerization with Docker :rocket:
Restful Api developed with Flask using Prometheus and Grafana for monitoring and containerization with Docker :rocket:

Hephaestus πŸš€ In Greek mythology, Hephaestus was either the son of Zeus and Hera or he was Hera's parthenogenous child. ... As a smithing god, Hephaes

Releases(v0.2.2)
Easy and secure implementation of Azure AD for your FastAPI APIs πŸ”’

FastAPI-Azure-auth Azure AD Authentication for FastAPI apps made easy. πŸš€ Description FastAPI is a modern, fast (high-performance), web framework for

Intility 216 Dec 27, 2022
Hook Slinger acts as a simple service that lets you send, retry, and manage event-triggered POST requests, aka webhooks

Hook Slinger acts as a simple service that lets you send, retry, and manage event-triggered POST requests, aka webhooks. It provides a fully self-contained docker image that is easy to orchestrate, m

Redowan Delowar 96 Jan 02, 2023
A simple Redis Streams backed Chat app using Websockets, Asyncio and FastAPI/Starlette.

redis-streams-fastapi-chat A simple demo of Redis Streams backed Chat app using Websockets, Python Asyncio and FastAPI/Starlette. Requires Python vers

ludwig404 135 Dec 19, 2022
A Python framework to build Slack apps in a flash with the latest platform features.

Bolt for Python A Python framework to build Slack apps in a flash with the latest platform features. Read the getting started guide and look at our co

SlackAPI 684 Jan 09, 2023
A FastAPI Framework for things like Database, Redis, Logging, JWT Authentication and Rate Limits

A FastAPI Framework for things like Database, Redis, Logging, JWT Authentication and Rate Limits Install You can install this Library with: pip instal

Tert0 33 Nov 28, 2022
A utility that allows you to use DI in fastapi without Depends()

fastapi-better-di What is this ? fastapi-better-di is a utility that allows you to use DI in fastapi without Depends() Installation pip install fastap

Maxim 9 May 24, 2022
A request rate limiter for fastapi

fastapi-limiter Introduction FastAPI-Limiter is a rate limiting tool for fastapi routes. Requirements redis Install Just install from pypi pip insta

long2ice 200 Jan 08, 2023
API using python and Fastapi framework

Welcome πŸ‘‹ CFCApi is a API DEVELOPMENT PROJECT UNDER CODE FOR COMMUNITY ! Project Walkthrough πŸš€ CFCApi run on Python using FASTapi Framework Docs The

Abhishek kushwaha 7 Jan 02, 2023
SuperSaaSFastAPI - Python SaaS Boilerplate for building Software-as-Service (SAAS) apps with FastAPI, Vue.js & Tailwind

Python SaaS Boilerplate for building Software-as-Service (SAAS) apps with FastAP

Rudy Bekker 31 Jan 10, 2023
Simple FastAPI Example : Blog API using FastAPI : Beginner Friendly

fastapi_blog FastAPI : Simple Blog API with CRUD operation Steps to run the project: git clone https://github.com/mrAvi07/fastapi_blog.git cd fastapi-

Avinash Alanjkar 1 Oct 08, 2022
Turns your Python functions into microservices with web API, interactive GUI, and more.

Instantly turn your Python functions into production-ready microservices. Deploy and access your services via HTTP API or interactive UI. Seamlessly export your services into portable, shareable, and

Machine Learning Tooling 2.8k Jan 04, 2023
API written using Fast API to manage events and implement a leaderboard / badge system.

Open Food Facts Events API written using Fast API to manage events and implement a leaderboard / badge system. Installation To run the API locally, ru

Open Food Facts 5 Jan 07, 2023
A minimum reproducible repository for embedding panel in FastAPI

FastAPI-Panel A minimum reproducible repository for embedding panel in FastAPI Follow either This Tutorial or These steps below ↓↓↓ Clone the reposito

Tyler Houssian 15 Sep 22, 2022
Starlette middleware for Prerender

Prerender Python Starlette Starlette middleware for Prerender Documentation: https://BeeMyDesk.github.io/prerender-python-starlette/ Source Code: http

BeeMyDesk 14 May 02, 2021
Sample-fastapi - A sample app using Fastapi that you can deploy on App Platform

Getting Started We provide a sample app using Fastapi that you can deploy on App

Erhan BÜTE 2 Jan 17, 2022
FastAPI Server Session is a dependency-based extension for FastAPI that adds support for server-sided session management

FastAPI Server-sided Session FastAPI Server Session is a dependency-based extension for FastAPI that adds support for server-sided session management.

DevGuyAhnaf 5 Dec 23, 2022
MQTT FastAPI Wrapper With Python

mqtt-fastapi-wrapper Quick start Create mosquitto.conf with the following content: ➜ /tmp cat mosquitto.conf persistence false allow_anonymous true

Vitalii Kulanov 3 May 09, 2022
This project shows how to serve an ONNX-optimized image classification model as a web service with FastAPI, Docker, and Kubernetes.

Deploying ML models with FastAPI, Docker, and Kubernetes By: Sayak Paul and Chansung Park This project shows how to serve an ONNX-optimized image clas

Sayak Paul 104 Dec 23, 2022
Repository for the Demo of using DVC with PyCaret & MLOps (DVC Office Hours - 20th Jan, 2022)

Using DVC with PyCaret & FastAPI (Demo) This repo contains all the resources for my demo explaining how to use DVC along with other interesting tools

Tezan Sahu 6 Jul 22, 2022
✨️🐍 SPARQL endpoint built with RDFLib to serve machine learning models, or any other logic implemented in Python

✨ SPARQL endpoint for RDFLib rdflib-endpoint is a SPARQL endpoint based on a RDFLib Graph to easily serve machine learning models, or any other logic

Vincent Emonet 27 Dec 19, 2022