A comprehensive CRUD API generator for SQLALchemy.

Overview

FastAPI Quick CRUD

Codacy Badge Coverage Status CircleCI PyPidownload SupportedVersion develop dtatus


docs page

Introduction

I believe that everyone who's working with FastApi and building some RESTful of CRUD services, wastes the time to writing similar code for simple CRUD every time

FastAPI Quick CRUD can generate CRUD in FastApi with SQLAlchemy schema of PostgreSQL Database.

  • Get one
  • Get many
  • Update one
  • Update many
  • Patch one
  • Patch many
  • Create/Upsert one
  • Create/Upsert many
  • Delete One
  • Delete Many
  • Post Redirect Get

FastAPI Quick CRUDis developed based on SQLAlchemy 1.4.23 version and supports sync and async.

Advantage

  • Support SQLAlchemy 1.4 - Allow you build a fully asynchronous python service, also supports synchronization.

  • Support Pagination - Get many API support order by offset limit field in API

  • Rich FastAPI CRUD router generation - Many operations of CRUD are implemented to complete the development and coverage of all aspects of basic CRUD.

  • CRUD route automatically generated - Support Declarative class definitions and Imperative table

  • Flexible API request - UPDATE ONE/MANY FIND ONE/MANY PATCH ONE/MANY DELETE ONE/MANY supports Path Parameters (primary key) and Query Parameters as a command to the resource to filter and limit the scope of the scope of data in request.

Constraint

  • Only Support PostgreSQL yet (support MongoDB,MSSQL in schedule)
  • If there are multiple unique constraints, please use composite unique constraints instead
  • Composite primary key is not support
  • Not Support API requests with specific resource xxx/{primary key} when table have not primary key;
    • UPDATE ONE
    • FIND ONE
    • PATCH ONE
    • DELETE ONE
  • Alias is not support for imperative table yet
  • Some types of columns are not supported as query parameter
    • INTERVAL
    • JSON
    • JSONB
    • H-STORE
    • ARRAY
    • BYTE
    • Geography
    • box
    • line
    • point
    • lseg
    • polygon
    • inet
    • macaddr

Getting started

Installation

pip install fastapi-quickcrud

Usage

Start PostgreSQL using:

docker run -d -p 5432:5432 --name mypostgres --restart always -v postgresql-data:/var/lib/postgresql/data -e POSTGRES_PASSWORD=1234 postgres

Simple Code (get more example from ./example)

from datetime import datetime, timezone

import uvicorn
from fastapi import FastAPI
from sqlalchemy import Column, Integer, \
    String, Table, ForeignKey
from sqlalchemy.orm import declarative_base, sessionmaker

from fastapi_quickcrud import CrudMethods
from fastapi_quickcrud import crud_router_builder
from fastapi_quickcrud import sqlalchemy_table_to_pydantic
from fastapi_quickcrud import sqlalchemy_to_pydantic

app = FastAPI()

Base = declarative_base()
metadata = Base.metadata

from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession

engine = create_async_engine('postgresql+asyncpg://postgres:[email protected]:5432/postgres', future=True, echo=True,
                             pool_use_lifo=True, pool_pre_ping=True, pool_recycle=7200)
async_session = sessionmaker(bind=engine, class_=AsyncSession)


async def get_transaction_session() -> AsyncSession:
    async with async_session() as session:
        async with session.begin():
            yield session


class User(Base):
    __tablename__ = 'users'

    id = Column(Integer, primary_key=True, autoincrement=True, unique=True)
    name = Column(String, nullable=False)
    email = Column(String, nullable=False, default=datetime.now(timezone.utc).strftime('%H:%M:%S%z'))


friend = Table(
    'friend', metadata,
    Column('id', ForeignKey('users.id', ondelete='CASCADE', onupdate='CASCADE'), nullable=False),
    Column('friend_name', String, nullable=False)
)

user_model_set = sqlalchemy_to_pydantic(db_model=User,
                                        crud_methods=[
                                            CrudMethods.FIND_MANY,
                                            CrudMethods.FIND_ONE,
                                            CrudMethods.UPSERT_ONE,
                                            CrudMethods.UPDATE_MANY,
                                            CrudMethods.UPDATE_ONE,
                                            CrudMethods.DELETE_ONE,
                                            CrudMethods.DELETE_MANY,
                                            CrudMethods.PATCH_MANY,

                                        ],
                                        exclude_columns=[])

friend_model_set = sqlalchemy_table_to_pydantic(db_model=friend,
                                                crud_methods=[
                                                    CrudMethods.FIND_MANY,
                                                    CrudMethods.UPSERT_MANY,
                                                    CrudMethods.UPDATE_MANY,
                                                    CrudMethods.DELETE_MANY,
                                                    CrudMethods.PATCH_MANY,

                                                ],
                                                exclude_columns=[])


crud_route_1 = crud_router_builder(db_session=get_transaction_session,
                                   crud_models=user_model_set,
                                   db_model=User,
                                   prefix="/user",
                                   dependencies=[],
                                   async_mode=True,
                                   tags=["User"]
                                   )
crud_route_2 = crud_router_builder(db_session=get_transaction_session,
                                   crud_models=friend_model_set,
                                   db_model=friend,
                                   async_mode=True,
                                   prefix="/friend",
                                   dependencies=[],
                                   tags=["Friend"]
                                   )


app.include_router(crud_route_1)
app.include_router(crud_route_2)
uvicorn.run(app, host="0.0.0.0", port=8000, debug=False)

Main module

covert SQLAlchemy to model set

use sqlalchemy_to_pydantic if SQLAlchemy model is Declarative Base Class

use sqlalchemy_table_to_pydantic if SQLAlchemy model is Table

  • argument:
    • db_model: SQLALchemy Declarative Base Class

    • crud_methods: CrudMethods

      • CrudMethods.FIND_ONE
      • CrudMethods.FIND_MANY
      • CrudMethods.UPDATE_ONE
      • CrudMethods.UPDATE_MANY
      • CrudMethods.PATCH_ONE
      • CrudMethods.PATCH_MANY
      • CrudMethods.UPSERT_ONE
      • CrudMethods.UPSERT_MANY
      • CrudMethods.DELETE_ONE
      • CrudMethods.DELETE_MANY
      • CrudMethods.POST_REDIRECT_GET
    • exclude_columns: list

      set the columns that not to be operated but the columns should nullable or set the default value)


Generate CRUD router

crud_router_builder

  • db_session: execute session generator
    • example:
      • sync SQLALchemy:
def get_transaction_session():
    try:
        db = sessionmaker(...)
        yield db
        db.commit()
    except Exception as e:
        db.rollback()
        raise e
    finally:
        db.close()
  • Async SQLALchemy
async def get_transaction_session() -> AsyncSession:
    async with async_session() as session:
        async with session.begin():
            yield session
  • db_model SQLALchemy Declarative Base Class

    Note: There are some constraint in the SQLALchemy Schema

  • async_modebool: if your db session is async

    Note: require async session generator if True

  • autocommitbool: if you don't need to commit by your self

    Note: require handle the commit in your async session generator if False

  • dependencies: API dependency injection of fastapi

    Note: Get the example usage in ./example

  • crud_models sqlalchemy_to_pydantic

  • dynamic argument (prefix, tags): extra argument for APIRouter() of fastapi

Design

In PUT DELETE PATCH, user can use Path Parameters and Query Parameters to limit the scope of the data affected by the operation, and the Query Parameters is same with FIND API

Path Parameter

In the design of this tool, Path Parameters should be a primary key of table, that why limited primary key can only be one.

Query Parameter

  • Query Operation will look like that when python type of column is

    string
    • support Approximate String Matching that require this
      • (<column_name>____str, <column_name>____str_____matching_pattern)
    • support In-place Operation, get the value of column in the list of input
      • (<column_name>____list, <column_name>____list____comparison_operator)
    • preview string
    numeric or datetime
    • support Range Searching from and to
      • (<column_name>____from, <column_name>____from_____comparison_operator)
      • (<column_name>____to, <column_name>____to_____comparison_operator)
    • support In-place Operation, get the value of column in the list of input
      • (<column_name>____list, <column_name>____list____comparison_operator)
    • preview numeric datetime
    uuid

    uuid supports In-place Operation only

    • support In-place Operation, get the value of column in the list of input
      • (<column_name>____list, <column_name>____list____comparison_operator)
  • EXTRA query parameter for GET_MANY:

    Pagination
    • limit
    • offset
    • order by
    • preview Pagination

Query to SQL statement example

  • Approximate String Matching

    example
    • request url
      /test_CRUD?
      char_value____str_____matching_pattern=match_regex_with_case_sensitive&
      char_value____str_____matching_pattern=does_not_match_regex_with_case_insensitive&
      char_value____str_____matching_pattern=case_sensitive&
      char_value____str_____matching_pattern=not_case_insensitive&
      char_value____str=a&
      char_value____str=b
      
    • generated sql
        SELECT *
        FROM untitled_table_256 
        WHERE (untitled_table_256.char_value ~ 'a') OR 
        (untitled_table_256.char_value ~ 'b' OR 
        (untitled_table_256.char_value !~* 'a') OR 
        (untitled_table_256.char_value !~* 'b' OR 
        untitled_table_256.char_value LIKE 'a' OR 
        untitled_table_256.char_value LIKE 'b' OR 
        untitled_table_256.char_value NOT ILIKE 'a' 
        OR untitled_table_256.char_value NOT ILIKE 'b'
  • In-place Operation

    example
    • In-place support the following operation

    • generated sql if user select Equal operation and input True and False

    • preview in

    • generated sql

        select * FROM untitled_table_256 
        WHERE untitled_table_256.bool_value = true OR 
        untitled_table_256.bool_value = false
  • Range Searching

    example
    • Range Searching support the following operation

      greater

      less

    • generated sql

        select * from untitled_table_256
        WHERE untitled_table_256.date_value > %(date_value_1)s 
        select * from untitled_table_256
        WHERE untitled_table_256.date_value < %(date_value_1)s 
  • Also support your custom dependency for each api(there is a example in ./example)

Request Body

In the design of this tool, the columns of the table will be used as the fields of request body.

In the basic request body in the api generated by this tool, some fields are optional if :

  • it is primary key with autoincrement is True or the server_default or default is True
  • it is not a primary key, but the server_default or default is True
  • The field is nullable

Upsert

POST API will perform the data insertion action with using the basic Request Body, In addition, it also supports upsert(insert on conflict do)

The operation will use upsert instead if the unique column in the inserted row that is being inserted already exists in the table

The tool uses unique columns in the table as a parameter of on conflict , and you can define which column will be updated

upsert

Alias

Alias is supported already

usage:

id = Column('primary_key',Integer, primary_key=True, server_default=text("nextval('untitled_table_256_id_seq'::regclass)"))

you can use info argument to set the alias name of column, and use synonym to map the column between alias column and original column

id = Column(Integer, info={'alias_name': 'primary_key'}, primary_key=True, server_default=text("nextval('untitled_table_256_id_seq'::regclass)"))
primary_key = synonym('id')

FastAPI_quickcrud Response Status Code standard

When you ask for a specific resource, say a user or with query param, and the user doesn't exist

GET: get one : https://0.0.0.0:8080/api/:userid?xx=xx

UPDATE: update one : https://0.0.0.0:8080/api/:userid?xx=xx

PATCH: patch one : https://0.0.0.0:8080/api/:userid?xx=xx

DELETE: delete one : https://0.0.0.0:8080/api/:userid?xx=xx

then fastapi-qucikcrud should return 404. In this case, the client requested a resource that doesn't exist.


In the other case, you have an api that operate data on batch in the system using the following url:

GET: get many : https://0.0.0.0:8080/api/user?xx=xx

UPDATE: update many : https://0.0.0.0:8080/api/user?xx=xx

DELETE: delete many : https://0.0.0.0:8080/api/user?xx=xx

PATCH: patch many : https://0.0.0.0:8080/api/user?xx=xx

If there are no users in the system, then, in this case, you should return 204.

TODO

  • handle relationship
  • support MYSQL , MSSQL cfand Sqllite
A FastAPI Middleware of joerick/pyinstrument to check your service performance.

fastapi_profiler A FastAPI Middleware of joerick/pyinstrument to check your service performance. 📣 Info A FastAPI Middleware of pyinstrument to check

LeoSun 107 Jan 05, 2023
This project shows how to serve an ONNX-optimized image classification model as a web service with FastAPI, Docker, and Kubernetes.

Deploying ML models with FastAPI, Docker, and Kubernetes By: Sayak Paul and Chansung Park This project shows how to serve an ONNX-optimized image clas

Sayak Paul 104 Dec 23, 2022
Prometheus integration for Starlette.

Starlette Prometheus Introduction Prometheus integration for Starlette. Requirements Python 3.6+ Starlette 0.9+ Installation $ pip install starlette-p

José Antonio Perdiguero 229 Dec 21, 2022
Sample FastAPI project that uses async SQLAlchemy, SQLModel, Postgres, Alembic, and Docker.

FastAPI + SQLModel + Alembic Sample FastAPI project that uses async SQLAlchemy, SQLModel, Postgres, Alembic, and Docker. Want to learn how to build th

228 Jan 02, 2023
Reusable utilities for FastAPI

Reusable utilities for FastAPI Documentation: https://fastapi-utils.davidmontague.xyz Source Code: https://github.com/dmontagu/fastapi-utils FastAPI i

David Montague 1.3k Jan 04, 2023
🔀⏳ Easy throttling with asyncio support

Throttler Zero-dependency Python package for easy throttling with asyncio support. 📝 Table of Contents 🎒 Install 🛠 Usage Examples Throttler and Thr

Ramzan Bekbulatov 80 Dec 07, 2022
Simple web app example serving a PyTorch model using streamlit and FastAPI

streamlit-fastapi-model-serving Simple example of usage of streamlit and FastAPI for ML model serving described on this blogpost and PyConES 2020 vide

Davide Fiocco 291 Jan 06, 2023
Restful Api developed with Flask using Prometheus and Grafana for monitoring and containerization with Docker :rocket:

Hephaestus 🚀 In Greek mythology, Hephaestus was either the son of Zeus and Hera or he was Hera's parthenogenous child. ... As a smithing god, Hephaes

Yasser Tahiri 16 Oct 07, 2022
A dynamic FastAPI router that automatically creates CRUD routes for your models

⚡ Create CRUD routes with lighting speed ⚡ A dynamic FastAPI router that automatically creates CRUD routes for your models

Adam Watkins 950 Jan 08, 2023
Voucher FastAPI

Voucher-API Requirement Docker Installed on system Libraries Pandas Psycopg2 FastAPI PyArrow Pydantic Uvicorn How to run Download the repo on your sys

Hassan Munir 1 Jan 26, 2022
CURSO PROMETHEUS E GRAFANA: Observability in a real world

Curso de monitoração com o Prometheus Esse curso ensina como usar o Prometheus como uma ferramenta integrada de monitoração, entender seus conceitos,

Rafael Cirolini 318 Dec 23, 2022
Ready-to-use and customizable users management for FastAPI

FastAPI Users Ready-to-use and customizable users management for FastAPI Documentation: https://fastapi-users.github.io/fastapi-users/ Source Code: ht

FastAPI Users 2.3k Dec 30, 2022
FastAPI IPyKernel Sandbox

FastAPI IPyKernel Sandbox This repository is a light-weight FastAPI project that is meant to provide a wrapper around IPyKernel interactions. It is in

Nick Wold 2 Oct 25, 2021
Fastapi performans monitoring

Fastapi-performans-monitoring This project is a simple performance monitoring for FastAPI. License This project is licensed under the terms of the MIT

bilal alpaslan 11 Dec 31, 2022
Simple FastAPI Example : Blog API using FastAPI : Beginner Friendly

fastapi_blog FastAPI : Simple Blog API with CRUD operation Steps to run the project: git clone https://github.com/mrAvi07/fastapi_blog.git cd fastapi-

Avinash Alanjkar 1 Oct 08, 2022
Keepalive - Discord Bot to keep threads from expiring

keepalive Discord Bot to keep threads from expiring Installation Create a new Di

Francesco Pierfederici 5 Mar 14, 2022
A basic JSON-RPC implementation for your Flask-powered sites

Flask JSON-RPC A basic JSON-RPC implementation for your Flask-powered sites. Some reasons you might want to use: Simple, powerful, flexible and python

Cenobit Technologies 273 Dec 01, 2022
FastAPI-PostgreSQL-Celery-RabbitMQ-Redis bakcend with Docker containerization

FastAPI - PostgreSQL - Celery - Rabbitmq backend This source code implements the following architecture: All the required database endpoints are imple

Juan Esteban Aristizabal 54 Nov 26, 2022
FastAPI native extension, easy and simple JWT auth

fastapi-jwt FastAPI native extension, easy and simple JWT auth

Konstantin Chernyshev 19 Dec 12, 2022
A simple Blogging Backend app created with Fast API

This is a simple blogging app backend built with FastAPI. This project is created to simulate a real CRUD blogging system. It is built to be used by s

Owusu Kelvin Clark 13 Mar 24, 2022