A comprehensive CRUD API generator for SQLALchemy.

Overview

FastAPI Quick CRUD

Codacy Badge Coverage Status CircleCI PyPidownload SupportedVersion develop dtatus


docs page

Introduction

I believe that everyone who's working with FastApi and building some RESTful of CRUD services, wastes the time to writing similar code for simple CRUD every time

FastAPI Quick CRUD can generate CRUD in FastApi with SQLAlchemy schema of PostgreSQL Database.

  • Get one
  • Get many
  • Update one
  • Update many
  • Patch one
  • Patch many
  • Create/Upsert one
  • Create/Upsert many
  • Delete One
  • Delete Many
  • Post Redirect Get

FastAPI Quick CRUDis developed based on SQLAlchemy 1.4.23 version and supports sync and async.

Advantage

  • Support SQLAlchemy 1.4 - Allow you build a fully asynchronous python service, also supports synchronization.

  • Support Pagination - Get many API support order by offset limit field in API

  • Rich FastAPI CRUD router generation - Many operations of CRUD are implemented to complete the development and coverage of all aspects of basic CRUD.

  • CRUD route automatically generated - Support Declarative class definitions and Imperative table

  • Flexible API request - UPDATE ONE/MANY FIND ONE/MANY PATCH ONE/MANY DELETE ONE/MANY supports Path Parameters (primary key) and Query Parameters as a command to the resource to filter and limit the scope of the scope of data in request.

Constraint

  • Only Support PostgreSQL yet (support MongoDB,MSSQL in schedule)
  • If there are multiple unique constraints, please use composite unique constraints instead
  • Composite primary key is not support
  • Not Support API requests with specific resource xxx/{primary key} when table have not primary key;
    • UPDATE ONE
    • FIND ONE
    • PATCH ONE
    • DELETE ONE
  • Alias is not support for imperative table yet
  • Some types of columns are not supported as query parameter
    • INTERVAL
    • JSON
    • JSONB
    • H-STORE
    • ARRAY
    • BYTE
    • Geography
    • box
    • line
    • point
    • lseg
    • polygon
    • inet
    • macaddr

Getting started

Installation

pip install fastapi-quickcrud

Usage

Start PostgreSQL using:

docker run -d -p 5432:5432 --name mypostgres --restart always -v postgresql-data:/var/lib/postgresql/data -e POSTGRES_PASSWORD=1234 postgres

Simple Code (get more example from ./example)

from datetime import datetime, timezone

import uvicorn
from fastapi import FastAPI
from sqlalchemy import Column, Integer, \
    String, Table, ForeignKey
from sqlalchemy.orm import declarative_base, sessionmaker

from fastapi_quickcrud import CrudMethods
from fastapi_quickcrud import crud_router_builder
from fastapi_quickcrud import sqlalchemy_table_to_pydantic
from fastapi_quickcrud import sqlalchemy_to_pydantic

app = FastAPI()

Base = declarative_base()
metadata = Base.metadata

from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession

engine = create_async_engine('postgresql+asyncpg://postgres:[email protected]:5432/postgres', future=True, echo=True,
                             pool_use_lifo=True, pool_pre_ping=True, pool_recycle=7200)
async_session = sessionmaker(bind=engine, class_=AsyncSession)


async def get_transaction_session() -> AsyncSession:
    async with async_session() as session:
        async with session.begin():
            yield session


class User(Base):
    __tablename__ = 'users'

    id = Column(Integer, primary_key=True, autoincrement=True, unique=True)
    name = Column(String, nullable=False)
    email = Column(String, nullable=False, default=datetime.now(timezone.utc).strftime('%H:%M:%S%z'))


friend = Table(
    'friend', metadata,
    Column('id', ForeignKey('users.id', ondelete='CASCADE', onupdate='CASCADE'), nullable=False),
    Column('friend_name', String, nullable=False)
)

user_model_set = sqlalchemy_to_pydantic(db_model=User,
                                        crud_methods=[
                                            CrudMethods.FIND_MANY,
                                            CrudMethods.FIND_ONE,
                                            CrudMethods.UPSERT_ONE,
                                            CrudMethods.UPDATE_MANY,
                                            CrudMethods.UPDATE_ONE,
                                            CrudMethods.DELETE_ONE,
                                            CrudMethods.DELETE_MANY,
                                            CrudMethods.PATCH_MANY,

                                        ],
                                        exclude_columns=[])

friend_model_set = sqlalchemy_table_to_pydantic(db_model=friend,
                                                crud_methods=[
                                                    CrudMethods.FIND_MANY,
                                                    CrudMethods.UPSERT_MANY,
                                                    CrudMethods.UPDATE_MANY,
                                                    CrudMethods.DELETE_MANY,
                                                    CrudMethods.PATCH_MANY,

                                                ],
                                                exclude_columns=[])


crud_route_1 = crud_router_builder(db_session=get_transaction_session,
                                   crud_models=user_model_set,
                                   db_model=User,
                                   prefix="/user",
                                   dependencies=[],
                                   async_mode=True,
                                   tags=["User"]
                                   )
crud_route_2 = crud_router_builder(db_session=get_transaction_session,
                                   crud_models=friend_model_set,
                                   db_model=friend,
                                   async_mode=True,
                                   prefix="/friend",
                                   dependencies=[],
                                   tags=["Friend"]
                                   )


app.include_router(crud_route_1)
app.include_router(crud_route_2)
uvicorn.run(app, host="0.0.0.0", port=8000, debug=False)

Main module

covert SQLAlchemy to model set

use sqlalchemy_to_pydantic if SQLAlchemy model is Declarative Base Class

use sqlalchemy_table_to_pydantic if SQLAlchemy model is Table

  • argument:
    • db_model: SQLALchemy Declarative Base Class

    • crud_methods: CrudMethods

      • CrudMethods.FIND_ONE
      • CrudMethods.FIND_MANY
      • CrudMethods.UPDATE_ONE
      • CrudMethods.UPDATE_MANY
      • CrudMethods.PATCH_ONE
      • CrudMethods.PATCH_MANY
      • CrudMethods.UPSERT_ONE
      • CrudMethods.UPSERT_MANY
      • CrudMethods.DELETE_ONE
      • CrudMethods.DELETE_MANY
      • CrudMethods.POST_REDIRECT_GET
    • exclude_columns: list

      set the columns that not to be operated but the columns should nullable or set the default value)


Generate CRUD router

crud_router_builder

  • db_session: execute session generator
    • example:
      • sync SQLALchemy:
def get_transaction_session():
    try:
        db = sessionmaker(...)
        yield db
        db.commit()
    except Exception as e:
        db.rollback()
        raise e
    finally:
        db.close()
  • Async SQLALchemy
async def get_transaction_session() -> AsyncSession:
    async with async_session() as session:
        async with session.begin():
            yield session
  • db_model SQLALchemy Declarative Base Class

    Note: There are some constraint in the SQLALchemy Schema

  • async_modebool: if your db session is async

    Note: require async session generator if True

  • autocommitbool: if you don't need to commit by your self

    Note: require handle the commit in your async session generator if False

  • dependencies: API dependency injection of fastapi

    Note: Get the example usage in ./example

  • crud_models sqlalchemy_to_pydantic

  • dynamic argument (prefix, tags): extra argument for APIRouter() of fastapi

Design

In PUT DELETE PATCH, user can use Path Parameters and Query Parameters to limit the scope of the data affected by the operation, and the Query Parameters is same with FIND API

Path Parameter

In the design of this tool, Path Parameters should be a primary key of table, that why limited primary key can only be one.

Query Parameter

  • Query Operation will look like that when python type of column is

    string
    • support Approximate String Matching that require this
      • (<column_name>____str, <column_name>____str_____matching_pattern)
    • support In-place Operation, get the value of column in the list of input
      • (<column_name>____list, <column_name>____list____comparison_operator)
    • preview string
    numeric or datetime
    • support Range Searching from and to
      • (<column_name>____from, <column_name>____from_____comparison_operator)
      • (<column_name>____to, <column_name>____to_____comparison_operator)
    • support In-place Operation, get the value of column in the list of input
      • (<column_name>____list, <column_name>____list____comparison_operator)
    • preview numeric datetime
    uuid

    uuid supports In-place Operation only

    • support In-place Operation, get the value of column in the list of input
      • (<column_name>____list, <column_name>____list____comparison_operator)
  • EXTRA query parameter for GET_MANY:

    Pagination
    • limit
    • offset
    • order by
    • preview Pagination

Query to SQL statement example

  • Approximate String Matching

    example
    • request url
      /test_CRUD?
      char_value____str_____matching_pattern=match_regex_with_case_sensitive&
      char_value____str_____matching_pattern=does_not_match_regex_with_case_insensitive&
      char_value____str_____matching_pattern=case_sensitive&
      char_value____str_____matching_pattern=not_case_insensitive&
      char_value____str=a&
      char_value____str=b
      
    • generated sql
        SELECT *
        FROM untitled_table_256 
        WHERE (untitled_table_256.char_value ~ 'a') OR 
        (untitled_table_256.char_value ~ 'b' OR 
        (untitled_table_256.char_value !~* 'a') OR 
        (untitled_table_256.char_value !~* 'b' OR 
        untitled_table_256.char_value LIKE 'a' OR 
        untitled_table_256.char_value LIKE 'b' OR 
        untitled_table_256.char_value NOT ILIKE 'a' 
        OR untitled_table_256.char_value NOT ILIKE 'b'
  • In-place Operation

    example
    • In-place support the following operation

    • generated sql if user select Equal operation and input True and False

    • preview in

    • generated sql

        select * FROM untitled_table_256 
        WHERE untitled_table_256.bool_value = true OR 
        untitled_table_256.bool_value = false
  • Range Searching

    example
    • Range Searching support the following operation

      greater

      less

    • generated sql

        select * from untitled_table_256
        WHERE untitled_table_256.date_value > %(date_value_1)s 
        select * from untitled_table_256
        WHERE untitled_table_256.date_value < %(date_value_1)s 
  • Also support your custom dependency for each api(there is a example in ./example)

Request Body

In the design of this tool, the columns of the table will be used as the fields of request body.

In the basic request body in the api generated by this tool, some fields are optional if :

  • it is primary key with autoincrement is True or the server_default or default is True
  • it is not a primary key, but the server_default or default is True
  • The field is nullable

Upsert

POST API will perform the data insertion action with using the basic Request Body, In addition, it also supports upsert(insert on conflict do)

The operation will use upsert instead if the unique column in the inserted row that is being inserted already exists in the table

The tool uses unique columns in the table as a parameter of on conflict , and you can define which column will be updated

upsert

Alias

Alias is supported already

usage:

id = Column('primary_key',Integer, primary_key=True, server_default=text("nextval('untitled_table_256_id_seq'::regclass)"))

you can use info argument to set the alias name of column, and use synonym to map the column between alias column and original column

id = Column(Integer, info={'alias_name': 'primary_key'}, primary_key=True, server_default=text("nextval('untitled_table_256_id_seq'::regclass)"))
primary_key = synonym('id')

FastAPI_quickcrud Response Status Code standard

When you ask for a specific resource, say a user or with query param, and the user doesn't exist

GET: get one : https://0.0.0.0:8080/api/:userid?xx=xx

UPDATE: update one : https://0.0.0.0:8080/api/:userid?xx=xx

PATCH: patch one : https://0.0.0.0:8080/api/:userid?xx=xx

DELETE: delete one : https://0.0.0.0:8080/api/:userid?xx=xx

then fastapi-qucikcrud should return 404. In this case, the client requested a resource that doesn't exist.


In the other case, you have an api that operate data on batch in the system using the following url:

GET: get many : https://0.0.0.0:8080/api/user?xx=xx

UPDATE: update many : https://0.0.0.0:8080/api/user?xx=xx

DELETE: delete many : https://0.0.0.0:8080/api/user?xx=xx

PATCH: patch many : https://0.0.0.0:8080/api/user?xx=xx

If there are no users in the system, then, in this case, you should return 204.

TODO

  • handle relationship
  • support MYSQL , MSSQL cfand Sqllite
Dead simple CSRF security middleware for Starlette ⭐ and Fast API ⚡

csrf-starlette-fastapi Dead simple CSRF security middleware for Starlette ⭐ and Fast API ⚡ Will work with either a input type="hidden" field or ajax

Nathaniel Sabanski 9 Nov 20, 2022
A rate limiter for Starlette and FastAPI

SlowApi A rate limiting library for Starlette and FastAPI adapted from flask-limiter. Note: this is alpha quality code still, the API may change, and

Laurent Savaete 562 Jan 01, 2023
fastapi-admin2 is an upgraded fastapi-admin, that supports ORM dialects, true Dependency Injection and extendability

FastAPI2 Admin Introduction fastapi-admin2 is an upgraded fastapi-admin, that supports ORM dialects, true Dependency Injection and extendability. Now

Glib 14 Dec 05, 2022
Flask-vs-FastAPI - Understanding Flask vs FastAPI Web Framework. A comparison of two different RestAPI frameworks.

Flask-vs-FastAPI Understanding Flask vs FastAPI Web Framework. A comparison of two different RestAPI frameworks. IntroductionIn Flask is a popular mic

Mithlesh Navlakhe 1 Jan 01, 2022
Town / City geolocations with FastAPI & Mongo

geolocations-api United Kingdom Town / City geolocations with FastAPI & Mongo Build container To build a custom image or extend the api run the follow

Joe Gasewicz 3 Jan 26, 2022
Slack webhooks API served by FastAPI

Slackers Slack webhooks API served by FastAPI What is Slackers Slackers is a FastAPI implementation to handle Slack interactions and events. It serves

Niels van Huijstee 68 Jan 05, 2023
FastAPI-Amis-Admin is a high-performance, efficient and easily extensible FastAPI admin framework. Inspired by django-admin, and has as many powerful functions as django-admin.

简体中文 | English 项目介绍 FastAPI-Amis-Admin fastapi-amis-admin是一个拥有高性能,高效率,易拓展的fastapi管理后台框架. 启发自Django-Admin,并且拥有不逊色于Django-Admin的强大功能. 源码 · 在线演示 · 文档 · 文

AmisAdmin 318 Dec 31, 2022
FastAPI Socket.io with first-class documentation using AsyncAPI

fastapi-sio Socket.io FastAPI integration library with first-class documentation using AsyncAPI The usage of the library is very familiar to the exper

Marián Hlaváč 9 Jan 02, 2023
FastAPI with async for generating QR codes and bolt11 for Lightning Addresses

sendsats An API for getting QR codes and Bolt11 Invoices from Lightning Addresses. Share anywhere; as a link for tips on a twitter profile, or via mes

Bitkarrot 12 Jan 07, 2023
Regex Converter for Flask URL Routes

Flask-Reggie Enable Regex Routes within Flask Installation pip install flask-reggie Configuration To enable regex routes within your application from

Rhys Elsmore 48 Mar 07, 2022
Flask-Bcrypt is a Flask extension that provides bcrypt hashing utilities for your application.

Flask-Bcrypt Flask-Bcrypt is a Flask extension that provides bcrypt hashing utilities for your application. Due to the recent increased prevelance of

Max Countryman 310 Dec 14, 2022
Sample project showing reliable data ingestion application using FastAPI and dramatiq

Create and deploy a reliable data ingestion service with FastAPI, SQLModel and Dramatiq This is the source code for the data ingestion service explain

François Voron 31 Nov 30, 2022
This code generator creates FastAPI app from an openapi file.

fastapi-code-generator This code generator creates FastAPI app from an openapi file. This project is an experimental phase. fastapi-code-generator use

Koudai Aono 632 Jan 05, 2023
Prometheus exporter for several chia node statistics

prometheus-chia-exporter Prometheus exporter for several chia node statistics It's assumed that the full node, the harvester and the wallet run on the

30 Sep 19, 2022
Docker image with Uvicorn managed by Gunicorn for high-performance FastAPI web applications in Python 3.6 and above with performance auto-tuning. Optionally with Alpine Linux.

Supported tags and respective Dockerfile links python3.8, latest (Dockerfile) python3.7, (Dockerfile) python3.6 (Dockerfile) python3.8-slim (Dockerfil

Sebastián Ramírez 2.1k Dec 31, 2022
Simple example of FastAPI + Celery + Triton for benchmarking

You can see the previous work from: https://github.com/Curt-Park/producer-consumer-fastapi-celery https://github.com/Curt-Park/triton-inference-server

Jinwoo Park (Curt) 37 Dec 29, 2022
Hook Slinger acts as a simple service that lets you send, retry, and manage event-triggered POST requests, aka webhooks

Hook Slinger acts as a simple service that lets you send, retry, and manage event-triggered POST requests, aka webhooks. It provides a fully self-contained docker image that is easy to orchestrate, m

Redowan Delowar 96 Jan 02, 2023
FastAPI application and service structure for a more maintainable codebase

Abstracting FastAPI Services See this article for more information: https://camillovisini.com/article/abstracting-fastapi-services/ Poetry poetry inst

Camillo Visini 309 Jan 04, 2023
Github timeline htmx based web app rewritten from Common Lisp to Python FastAPI

python-fastapi-github-timeline Rewrite of Common Lisp htmx app _cl-github-timeline into Python using FastAPI. This project tries to prove, that with h

Jan Vlčinský 4 Mar 25, 2022
Cookiecutter template for FastAPI projects using: Machine Learning, Poetry, Azure Pipelines and Pytests

cookiecutter-fastapi In order to create a template to FastAPI projects. 🚀 Important To use this project you don't need fork it. Just run cookiecutter

Arthur Henrique 225 Dec 28, 2022