Mixer -- Is a fixtures replacement. Supported Django, Flask, SqlAlchemy and custom python objects.

Overview

https://raw.github.com/klen/mixer/develop/docs/_static/logo.png

The Mixer is a helper to generate instances of Django or SQLAlchemy models. It's useful for testing and fixture replacement. Fast and convenient test-data generation.

Mixer supports:

Tests Status Version Downloads License

Docs are available at https://mixer.readthedocs.org/. Pull requests with documentation enhancements and/or fixes are awesome and most welcome.

Описание на русском языке: http://klen.github.io/mixer.html

Important

From version 6.2 the Mixer library doesn't support Python 2. The latest version with python<3 support is mixer 6.1.3

Requirements

  • Python 3.7+
  • Django (3.0, 3.1) for Django ORM support;
  • Flask-SQLALchemy for SQLAlchemy ORM support and integration as Flask application;
  • Faker >= 0.7.3
  • Mongoengine for Mongoengine ODM support;
  • SQLAlchemy for SQLAlchemy ORM support;
  • Peewee ORM support;

Installation

Mixer should be installed using pip:

pip install mixer

Usage

By default Mixer tries to generate fake (human-friendly) data.
If you want to randomize the generated values initialize the Mixer
by manual: Mixer(fake=False)
By default Mixer saves the generated objects in a database. If you want to disable
this, initialize the Mixer by manual like Mixer(commit=False)

Django workflow

Quick example:

from mixer.backend.django import mixer
from customapp.models import User, UserMessage

# Generate a random user
user = mixer.blend(User)

# Generate an UserMessage
message = mixer.blend(UserMessage, user=user)

# Generate an UserMessage and an User. Set username for generated user to 'testname'.
message = mixer.blend(UserMessage, user__username='testname')

# Generate SomeModel from SomeApp and select FK or M2M values from db
some = mixer.blend('someapp.somemodel', somerelation=mixer.SELECT)

# Generate SomeModel from SomeApp and force a value of money field from default to random
some = mixer.blend('someapp.somemodel', money=mixer.RANDOM)

# Generate 5 SomeModel's instances and take company field's values from custom generator
some_models = mixer.cycle(5).blend('somemodel', company=(name for name in company_names))

Flask, Flask-SQLAlchemy

Quick example:

from mixer.backend.flask import mixer
from models import User, UserMessage

mixer.init_app(self.app)

# Generate a random user
user = mixer.blend(User)

# Generate an userMessage
message = mixer.blend(UserMessage, user=user)

# Generate an UserMessage and an User. Set username for generated user to 'testname'.
message = mixer.blend(UserMessage, user__username='testname')

# Generate SomeModel and select FK or M2M values from db
some = mixer.blend('project.models.SomeModel', somerelation=mixer.SELECT)

# Generate SomeModel from SomeApp and force a value of money field from default to random
some = mixer.blend('project.models.SomeModel', money=mixer.RANDOM)

# Generate 5 SomeModel's instances and take company field's values from custom generator
some_models = mixer.cycle(5).blend('project.models.SomeModel', company=(company for company in companies))

Support for Flask-SQLAlchemy models that have __init__ arguments

For support this scheme, just create your own mixer class, like this:

from mixer.backend.sqlalchemy import Mixer

class MyOwnMixer(Mixer):

    def populate_target(self, values):
        target = self.__scheme(**values)
        return target

mixer = MyOwnMixer()

SQLAlchemy workflow

Example of initialization:

from mixer.backend.sqlalchemy import Mixer

ENGINE = create_engine('sqlite:///:memory:')
BASE = declarative_base()
SESSION = sessionmaker(bind=ENGINE)

mixer = Mixer(session=SESSION(), commit=True)
role = mixer.blend('package.models.Role')

Also, see Flask, Flask-SQLAlchemy.

Mongoengine workflow

Example usage:

from mixer.backend.mongoengine import mixer

class User(Document):
    created_at = DateTimeField(default=datetime.datetime.now)
    email = EmailField(required=True)
    first_name = StringField(max_length=50)
    last_name = StringField(max_length=50)
    username = StringField(max_length=50)

class Post(Document):
    title = StringField(max_length=120, required=True)
    author = ReferenceField(User)
    tags = ListField(StringField(max_length=30))

post = mixer.blend(Post, author__username='foo')

Marshmallow workflow

Example usage:

from mixer.backend.marshmallow import mixer
import marshmallow as ma

class User(ma.Schema):
    created_at = ma.fields.DateTime(required=True)
    email = ma.fields.Email(required=True)
    first_name = ma.fields.String(required=True)
    last_name = ma.fields.String(required=True)
    username = ma.fields.String(required=True)

class Post(ma.Schema):
    title = ma.fields.String(required=True)
    author = ma.fields.Nested(User, required=True)

post = mixer.blend(Post, author__username='foo')

Common usage

Quick example:

from mixer.main import mixer

class Test:
    one = int
    two = int
    name = str

class Scheme:
    name = str
    money = int
    male = bool
    prop = Test

scheme = mixer.blend(Scheme, prop__one=1)

DB commits

By default 'django', 'flask', 'mongoengine' backends tries to save objects in database. For preventing this behavior init mixer manually:

from mixer.backend.django import Mixer

mixer = Mixer(commit=False)

Or you can temporary switch context use the mixer as context manager:

from mixer.backend.django import mixer

# Will be save to db
user1 = mixer.blend('auth.user')

# Will not be save to db
with mixer.ctx(commit=False):
    user2 = mixer.blend('auth.user')

Custom fields

The mixer allows you to define generators for fields by manually. Quick example:

from mixer.main import mixer

class Test:
    id = int
    name = str

mixer.register(Test,
    name=lambda: 'John',
    id=lambda: str(mixer.faker.small_positive_integer())
)

test = mixer.blend(Test)
test.name == 'John'
isinstance(test.id, str)

# You could pinned just a value to field
mixer.register(Test, name='Just John')
test = mixer.blend(Test)
test.name == 'Just John'

Also, you can make your own factory for field types:

from mixer.backend.django import Mixer, GenFactory

def get_func(*args, **kwargs):
    return "Always same"

class MyFactory(GenFactory):
    generators = {
        models.CharField: get_func
    }

mixer = Mixer(factory=MyFactory)

Middlewares

You can add middleware layers to process generation:

from mixer.backend.django import mixer

# Register middleware to model
@mixer.middleware('auth.user')
def encrypt_password(user):
    user.set_password('test')
    return user

You can add several middlewares. Each middleware should get one argument (generated value) and return them.

It's also possible to unregister a middleware:

mixer.unregister_middleware(encrypt_password)

Locales

By default mixer uses 'en' locale. You could switch mixer default locale by creating your own mixer:

from mixer.backend.django import Mixer

mixer = Mixer(locale='it')
mixer.faker.name()          ## u'Acchisio Conte'

At any time you could switch mixer current locale:

mixer.faker.locale = 'cz'
mixer.faker.name()          ## u'Miloslava Urbanov\xe1 CSc.'

mixer.faker.locale = 'en'
mixer.faker.name()          ## u'John Black'

# Use the mixer context manager
mixer.faker.phone()         ## u'1-438-238-1116'
with mixer.ctx(locale='fr'):
    mixer.faker.phone()     ## u'08 64 92 11 79'

mixer.faker.phone()         ## u'1-438-238-1116'

Bug tracker

If you have any suggestions, bug reports or annoyances please report them to the issue tracker at https://github.com/klen/mixer/issues

Contributing

Development of mixer happens at Github: https://github.com/klen/mixer

Contributors

License

Licensed under a BSD license.

Owner
Kirill Klenov
Kirill Klenov
FastAPI simple cache

FastAPI Cache Implements simple lightweight cache system as dependencies in FastAPI. Installation pip install fastapi-cache Usage example from fastapi

Ivan Sushkov 188 Dec 29, 2022
This repository contains learning resources for Python Fast API Framework and Docker

This repository contains learning resources for Python Fast API Framework and Docker, Build High Performing Apps With Python BootCamp by Lux Academy and Data Science East Africa.

Harun Mbaabu Mwenda 23 Nov 20, 2022
SQLAlchemy Admin for Starlette/FastAPI

SQLAlchemy Admin for Starlette/FastAPI SQLAdmin is a flexible Admin interface for SQLAlchemy models. Main features include: SQLAlchemy sync/async engi

Amin Alaee 683 Jan 03, 2023
FastAPI Project Template

The base to start an openapi project featuring: SQLModel, Typer, FastAPI, JWT Token Auth, Interactive Shell, Management Commands.

A.Freud 4 Dec 05, 2022
cookiecutter template for web API with python

Python project template for Web API with cookiecutter What's this This provides the project template including minimum test/lint/typechecking package

Hitoshi Manabe 4 Jan 28, 2021
Pagination support for flask

flask-paginate Pagination support for flask framework (study from will_paginate). It supports several css frameworks. It requires Python2.6+ as string

Lix Xu 264 Nov 07, 2022
A simple Blogging Backend app created with Fast API

This is a simple blogging app backend built with FastAPI. This project is created to simulate a real CRUD blogging system. It is built to be used by s

Owusu Kelvin Clark 13 Mar 24, 2022
A utility that allows you to use DI in fastapi without Depends()

fastapi-better-di What is this ? fastapi-better-di is a utility that allows you to use DI in fastapi without Depends() Installation pip install fastap

Maxim 9 May 24, 2022
Light, Flexible and Extensible ASGI API framework

Starlite Starlite is a light and flexible ASGI API framework. Using Starlette and pydantic as foundations. Check out the Starlite documentation 📚 Cor

1.5k Jan 04, 2023
LuSyringe is a documentation injection tool for your classes when using Fast API

LuSyringe LuSyringe is a documentation injection tool for your classes when using Fast API Benefits The main benefit is being able to separate your bu

Enzo Ferrari 2 Sep 06, 2021
🐍Pywork is a Yeoman generator to scaffold a Bare-bone Python Application

Pywork python app yeoman generator Yeoman | Npm Pywork | Home PyWork is a Yeoman generator for a basic python-worker project that makes use of Pipenv,

Vu Tran 10 Dec 16, 2022
A Python framework to build Slack apps in a flash with the latest platform features.

Bolt for Python A Python framework to build Slack apps in a flash with the latest platform features. Read the getting started guide and look at our co

SlackAPI 684 Jan 09, 2023
API using python and Fastapi framework

Welcome 👋 CFCApi is a API DEVELOPMENT PROJECT UNDER CODE FOR COMMUNITY ! Project Walkthrough 🚀 CFCApi run on Python using FASTapi Framework Docs The

Abhishek kushwaha 7 Jan 02, 2023
Ready-to-use and customizable users management for FastAPI

FastAPI Users Ready-to-use and customizable users management for FastAPI Documentation: https://fastapi-users.github.io/fastapi-users/ Source Code: ht

FastAPI Users 2.3k Dec 30, 2022
Simple notes app backend using Python's FastAPI framework.

my-notes-app Simple notes app backend using Python's FastAPI framework. Route "/": User login (GET): return 200, list of all of their notes; User sign

José Gabriel Mourão Bezerra 2 Sep 17, 2022
FastAPI Socket.io with first-class documentation using AsyncAPI

fastapi-sio Socket.io FastAPI integration library with first-class documentation using AsyncAPI The usage of the library is very familiar to the exper

Marián Hlaváč 9 Jan 02, 2023
🔀⏳ Easy throttling with asyncio support

Throttler Zero-dependency Python package for easy throttling with asyncio support. 📝 Table of Contents 🎒 Install 🛠 Usage Examples Throttler and Thr

Ramzan Bekbulatov 80 Dec 07, 2022
Sample-fastapi - A sample app using Fastapi that you can deploy on App Platform

Getting Started We provide a sample app using Fastapi that you can deploy on App

Erhan BÜTE 2 Jan 17, 2022
Drop-in MessagePack support for ASGI applications and frameworks

msgpack-asgi msgpack-asgi allows you to add automatic MessagePack content negotiation to ASGI applications (Starlette, FastAPI, Quart, etc.), with a s

Florimond Manca 128 Jan 02, 2023
A web application using [FastAPI + streamlit + Docker] Neural Style Transfer (NST) refers to a class of software algorithms that manipulate digital images

Neural Style Transfer Web App - [FastAPI + streamlit + Docker] NST - application based on the Perceptual Losses for Real-Time Style Transfer and Super

Roman Spiridonov 3 Dec 05, 2022