flask extension for integration with the awesome pydantic package

Overview

Flask-Pydantic

Actions Status PyPI Language grade: Python License Code style

Flask extension for integration of the awesome pydantic package with Flask.

Installation

python3 -m pip install Flask-Pydantic

Basics

URL query and body parameters

validate decorator validates query and body request parameters and makes them accessible two ways:

  1. Using validate arguments, via flask's request variable
parameter type request attribute name
query query_params
body body_params
  1. Using the decorated function argument parameters type hints

URL path parameter

If you use annotated path URL path parameters as follows

@app.route("/users/", methods=["GET"])
@validate()
def get_user(user_id: str):
    pass

flask_pydantic will parse and validate user_id variable in the same manner as for body and query parameters.


Additional validate arguments

  • Success response status code can be modified via on_success_status parameter of validate decorator.
  • response_many parameter set to True enables serialization of multiple models (route function should therefore return iterable of models).
  • request_body_many parameter set to False analogically enables serialization of multiple models inside of the root level of request body. If the request body doesn't contain an array of objects 400 response is returned,
  • If validation fails, 400 response is returned with failure explanation.

For more details see in-code docstring or example app.

Usage

Example 1: Query parameters only

Simply use validate decorator on route function.

Be aware that @app.route decorator must precede @validate (i. e. @validate must be closer to the function declaration).

from typing import Optional
from flask import Flask, request
from pydantic import BaseModel

from flask_pydantic import validate

app = Flask("flask_pydantic_app")

class QueryModel(BaseModel):
  age: int

class ResponseModel(BaseModel):
  id: int
  age: int
  name: str
  nickname: Optional[str]

# Example 1: query parameters only
@app.route("/", methods=["GET"])
@validate()
def get(query: QueryModel):
  age = query.age
  return ResponseModel(
    age=age,
    id=0, name="abc", nickname="123"
    )
See the full example app here
  • age query parameter is a required int
    • curl --location --request GET 'http://127.0.0.1:5000/'
    • if none is provided the response contains:
      {
        "validation_error": {
          "query_params": [
            {
              "loc": ["age"],
              "msg": "field required",
              "type": "value_error.missing"
            }
          ]
        }
      }
    • for incompatible type (e. g. string /?age=not_a_number)
    • curl --location --request GET 'http://127.0.0.1:5000/?age=abc'
      {
        "validation_error": {
          "query_params": [
            {
              "loc": ["age"],
              "msg": "value is not a valid integer",
              "type": "type_error.integer"
            }
          ]
        }
      }
  • likewise for body parameters
  • example call with valid parameters: curl --location --request GET 'http://127.0.0.1:5000/?age=20'

-> {"id": 0, "age": 20, "name": "abc", "nickname": "123"}

Example 2: URL path parameter

@app.route("/character//", methods=["GET"])
@validate()
def get_character(character_id: int):
    characters = [
        ResponseModel(id=1, age=95, name="Geralt", nickname="White Wolf"),
        ResponseModel(id=2, age=45, name="Triss Merigold", nickname="sorceress"),
        ResponseModel(id=3, age=42, name="Julian Alfred Pankratz", nickname="Jaskier"),
        ResponseModel(id=4, age=101, name="Yennefer", nickname="Yenn"),
    ]
    try:
        return characters[character_id]
    except IndexError:
        return {"error": "Not found"}, 400

Example 3: Request body only

class RequestBodyModel(BaseModel):
  name: str
  nickname: Optional[str]

# Example2: request body only
@app.route("/", methods=["POST"])
@validate()
def post(body: RequestBodyModel): 
  name = body.name
  nickname = body.nickname
  return ResponseModel(
    name=name, nickname=nickname,id=0, age=1000
    )
See the full example app here

Example 4: BOTH query paramaters and request body

# Example 3: both query paramters and request body
@app.route("/both", methods=["POST"])
@validate()
def get_and_post(body: RequestBodyModel,query: QueryModel):
  name = body.name # From request body
  nickname = body.nickname # From request body
  age = query.age # from query parameters
  return ResponseModel(
    age=age, name=name, nickname=nickname,
    id=0
  )
See the full example app here

Modify response status code

The default success status code is 200. It can be modified in two ways

  • in return statement
# necessary imports, app and models definition
...

@app.route("/", methods=["POST"])
@validate(body=BodyModel, query=QueryModel)
def post():
    return ResponseModel(
            id=id_,
            age=request.query_params.age,
            name=request.body_params.name,
            nickname=request.body_params.nickname,
        ), 201
  • in validate decorator
@app.route("/", methods=["POST"])
@validate(body=BodyModel, query=QueryModel, on_success_status=201)
def post():
    ...

Status code in case of validation error can be modified using FLASK_PYDANTIC_VALIDATION_ERROR_STATUS_CODE flask configuration variable.

Using the decorated function kwargs

Instead of passing body and query to validate, it is possible to directly defined them by using type hinting in the decorated function.

# necessary imports, app and models definition
...

@app.route("/", methods=["POST"])
@validate()
def post(body: BodyModel, query: QueryModel):
    return ResponseModel(
            id=id_,
            age=query.age,
            name=body.name,
            nickname=body.nickname,
        )

This way, the parsed data will be directly available in body and query. Furthermore, your IDE will be able to correctly type them.

Model aliases

Pydantic's alias feature is natively supported for query and body models. To use aliases in response modify response model

def modify_key(text: str) -> str:
    # do whatever you want with model keys
    return text


class MyModel(BaseModel):
    ...
    class Config:
        alias_generator = modify_key
        allow_population_by_field_name = True

and set response_by_alias=True in validate decorator

@app.route(...)
@validate(response_by_alias=True)
def my_route():
    ...
    return MyModel(...)

Example app

For more complete examples see example application.

Configuration

The behaviour can be configured using flask's application config FLASK_PYDANTIC_VALIDATION_ERROR_STATUS_CODE - response status code after validation error (defaults to 400)

Contributing

Feature requests and pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

  • clone repository
    git clone https://github.com/bauerji/flask_pydantic.git
    cd flask_pydantic
  • create virtual environment and activate it
    python3 -m venv venv
    source venv/bin/activate
  • install development requirements
    python3 -m pip install -r requirements/test.pip
  • checkout new branch and make your desired changes (don't forget to update tests)
    git checkout -b <your_branch_name>
  • run tests
    python3 -m pytest
  • if tests fails on Black tests, make sure You have your code compliant with style of Black formatter
  • push your changes and create a pull request to master branch

TODOs:

  • header request parameters
  • cookie request parameters
A simple example of deploying FastAPI as a Zeit Serverless Function

FastAPI Zeit Now Deploy a FastAPI app as a Zeit Serverless Function. This repo deploys the FastAPI SQL Databases Tutorial to demonstrate how a FastAPI

Paul Weidner 26 Dec 21, 2022
Starlette middleware for Prerender

Prerender Python Starlette Starlette middleware for Prerender Documentation: https://BeeMyDesk.github.io/prerender-python-starlette/ Source Code: http

BeeMyDesk 14 May 02, 2021
Instrument your FastAPI app

Prometheus FastAPI Instrumentator A configurable and modular Prometheus Instrumentator for your FastAPI. Install prometheus-fastapi-instrumentator fro

Tim Schwenke 441 Jan 05, 2023
A minimal FastAPI implementation for Django !

Caution!!! This project is in early developing stage. So use it at you own risk. Bug reports / Fix PRs are welcomed. Installation pip install django-m

toki 23 Dec 24, 2022
Deploy/View images to database sqlite with fastapi

Deploy/View images to database sqlite with fastapi cd realistic Dependencies dat

Fredh Macau 1 Jan 04, 2022
High-performance Async REST API, in Python. FastAPI + GINO + Arq + Uvicorn (w/ Redis and PostgreSQL).

fastapi-gino-arq-uvicorn High-performance Async REST API, in Python. FastAPI + GINO + Arq + Uvicorn (powered by Redis & PostgreSQL). Contents Get Star

Leo Sussan 351 Jan 04, 2023
🍃 A comprehensive monitoring and alerting solution for the status of your Chia farmer and harvesters.

chia-monitor A monitoring tool to collect all important metrics from your Chia farming node and connected harvesters. It can send you push notificatio

Philipp Normann 153 Oct 21, 2022
cookiecutter template for web API with python

Python project template for Web API with cookiecutter What's this This provides the project template including minimum test/lint/typechecking package

Hitoshi Manabe 4 Jan 28, 2021
Voucher FastAPI

Voucher-API Requirement Docker Installed on system Libraries Pandas Psycopg2 FastAPI PyArrow Pydantic Uvicorn How to run Download the repo on your sys

Hassan Munir 1 Jan 26, 2022
A rate limiter for Starlette and FastAPI

SlowApi A rate limiting library for Starlette and FastAPI adapted from flask-limiter. Note: this is alpha quality code still, the API may change, and

Laurent Savaete 562 Jan 01, 2023
Lazy package to start your project using FastAPI✨

Fastapi-lazy 🦥 Utilities that you use in various projects made in FastAPI. Source Code: https://github.com/yezz123/fastapi-lazy Install the project:

Yasser Tahiri 95 Dec 29, 2022
A minimum reproducible repository for embedding panel in FastAPI

FastAPI-Panel A minimum reproducible repository for embedding panel in FastAPI Follow either This Tutorial or These steps below ↓↓↓ Clone the reposito

Tyler Houssian 15 Sep 22, 2022
Feature rich robust FastAPI template.

Flexible and Lightweight general-purpose template for FastAPI. Usage ⚠️ Git, Python and Poetry must be installed and accessible ⚠️ Poetry version must

Pavel Kirilin 588 Jan 04, 2023
Town / City geolocations with FastAPI & Mongo

geolocations-api United Kingdom Town / City geolocations with FastAPI & Mongo Build container To build a custom image or extend the api run the follow

Joe Gasewicz 3 Jan 26, 2022
FastAPI native extension, easy and simple JWT auth

fastapi-jwt FastAPI native extension, easy and simple JWT auth

Konstantin Chernyshev 19 Dec 12, 2022
Adds simple SQLAlchemy support to FastAPI

FastAPI-SQLAlchemy FastAPI-SQLAlchemy provides a simple integration between FastAPI and SQLAlchemy in your application. It gives access to useful help

Michael Freeborn 465 Jan 07, 2023
This project shows how to serve an ONNX-optimized image classification model as a web service with FastAPI, Docker, and Kubernetes.

Deploying ML models with FastAPI, Docker, and Kubernetes By: Sayak Paul and Chansung Park This project shows how to serve an ONNX-optimized image clas

Sayak Paul 104 Dec 23, 2022
Pagination support for flask

flask-paginate Pagination support for flask framework (study from will_paginate). It supports several css frameworks. It requires Python2.6+ as string

Lix Xu 264 Nov 07, 2022
🐍Pywork is a Yeoman generator to scaffold a Bare-bone Python Application

Pywork python app yeoman generator Yeoman | Npm Pywork | Home PyWork is a Yeoman generator for a basic python-worker project that makes use of Pipenv,

Vu Tran 10 Dec 16, 2022
CLI and Streamlit applications to create APIs from Excel data files within seconds, using FastAPI

FastAPI-Wrapper CLI & APIness Streamlit App Arvindra Sehmi, Oxford Economics Ltd. | Website | LinkedIn (Updated: 21 April, 2021) fastapi-wrapper is mo

Arvindra 49 Dec 03, 2022