Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

Overview

SA-AutoAug

Scale-aware Automatic Augmentation for Object Detection

Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia

[Paper] [BibTeX]


This project provides the implementation for the CVPR 2021 paper "Scale-aware Automatic Augmentation for Object Detection". Scale-aware AutoAug provides a new search space and search metric to find effective data agumentation policies for object detection. It is implemented on maskrcnn-benchmark and FCOS. Both search and training codes have been released. To facilitate more use, we re-implement the training code based on Detectron2.

Installation

For maskrcnn-benchmark code, please follow INSTALL.md for instruction.

For FCOS code, please follow INSTALL.md for instruction.

For Detectron2 code, please follow INSTALL.md for instruction.

Search

(You can skip this step and directly train on our searched policies.)

To search with 8 GPUs, run:

cd /path/to/SA-AutoAug/maskrcnn-benchmark
export NGPUS=8
python3 -m torch.distributed.launch --nproc_per_node=$NGPUS tools/search.py --config-file configs/SA_AutoAug/retinanet_R-50-FPN_search.yaml OURPUT_DIR /path/to/searchlog_dir

Since we finetune on an existing baseline model during search, a baseline model is needed. You can download this model for search, or you can use other Retinanet baseline model trained by yourself.

Training

To train the searched policies on maskrcnn-benchmark (FCOS)

cd /path/to/SA-AutoAug/maskrcnn-benchmark
export NGPUS=8
python3 -m torch.distributed.launch --nproc_per_node=$NGPUS tools/train_net.py --config-file configs/SA_AutoAug/CONFIG_FILE  OUTPUT_DIR /path/to/traininglog_dir

For example, to train the retinanet ResNet-50 model with our searched data augmentation policies in 6x schedule:

cd /path/to/SA-AutoAug/maskrcnn-benchmark
export NGPUS=8
python3 -m torch.distributed.launch --nproc_per_node=$NGPUS tools/train_net.py --config-file configs/SA_AutoAug/retinanet_R-50-FPN_6x.yaml  OUTPUT_DIR models/retinanet_R-50-FPN_6x_SAAutoAug

To train the searched policies on detectron2

cd /path/to/SA-AutoAug/detectron2
python3 ./tools/train_net.py --num-gpus 8 --config-file ./configs/COCO-Detection/SA_AutoAug/CONFIG_FILE OUTPUT_DIR /path/to/traininglog_dir

For example, to train the retinanet ResNet-50 model with our searched data augmentation policies in 6x schedule:

cd /path/to/SA-AutoAug/detectron2
python3 ./tools/train_net.py --num-gpus 8 --config-file ./configs/COCO-Detection/SA_AutoAug/retinanet_R_50_FPN_6x.yaml OUTPUT_DIR output_retinanet_R_50_FPN_6x_SAAutoAug

Results

We provide the results on COCO val2017 set with pretrained models.

Based on maskrcnn-benchmark

Method Backbone APbbox Download
Faster R-CNN ResNet-50 41.8 Model
Faster R-CNN ResNet-101 44.2 Model
RetinaNet ResNet-50 41.4 Model
RetinaNet ResNet-101 42.8 Model
Mask R-CNN ResNet-50 42.8 Model
Mask R-CNN ResNet-101 45.3 Model

Based on FCOS

Method Backbone APbbox Download
FCOS ResNet-50 42.6 Model
FCOS ResNet-101 44.0 Model
ATSS ResNext-101-32x8d-dcnv2 48.5 Model
ATSS ResNext-101-32x8d-dcnv2 (1200 size) 49.6 Model

Based on Detectron2

Method Backbone APbbox Download
Faster R-CNN ResNet-50 41.9 Model - Metrics
Faster R-CNN ResNet-101 44.2 Model - Metrics
RetinaNet ResNet-50 40.8 Model - Metrics
RetinaNet ResNet-101 43.1 Model - Metrics
Mask R-CNN ResNet-50 - Training
Mask R-CNN ResNet-101 - Training

Citing SA-AutoAug

Consider cite SA-Autoaug in your publications if it helps your research.

@inproceedings{saautoaug,
  title={Scale-aware Automatic Augmentation for Object Detection},
  author={Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

Acknowledgments

This training code of this project is built on maskrcnn-benchmark, Detectron2, FCOS, and ATSS. The search code of this project is modified from DetNAS. Some augmentation code and settings follow AutoAug-Det. We thanks a lot for the authors of these projects.

Note that:

(1) We also provides script files for search and training in maskrcnn-benchmark, FCOS, and, detectron2.

(2) Any issues or pull requests on this project are welcome. In addition, if you meet problems when applying the augmentations to other datasets or codebase, feel free to contact Yukang Chen ([email protected]).

Owner
Jia Research Lab
Research lab focusing on CV led by Prof. Jiaya Jia
Jia Research Lab
Go package for OCR (Optical Character Recognition), by using Tesseract C++ library

gosseract OCR Golang OCR package, by using Tesseract C++ library. OCR Server Do you just want OCR server, or see the working example of this package?

Hiromu OCHIAI 1.9k Dec 28, 2022
Discord QR Scam Code Generator + Token grab mobile device.

A Python script that automatically generates a Nitro scam QR code and grabs the Discord token when scanned.

Visual 9 Nov 22, 2022
SceneCollisionNet This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more info

SceneCollisionNet This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more info

NVIDIA Research Projects 31 Nov 22, 2022
DouZero is a reinforcement learning framework for DouDizhu - 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

Kwai 3.1k Jan 05, 2023
Learn computer graphics by writing GPU shaders!

This repo contains a selection of projects designed to help you learn the basics of computer graphics. We'll be writing shaders to render interactive two-dimensional and three-dimensional scenes.

Eric Zhang 1.9k Jan 02, 2023
Pre-Recognize Library - library with algorithms for improving OCR quality.

PRLib - Pre-Recognition Library. The main aim of the library - prepare image for recogntion. Image processing can really help to improve recognition q

Alex 80 Dec 30, 2022
Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper.

EnergyExpenditure Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper. Additional data for replicating this s

Patrick S 42 Oct 26, 2022
Creating a virtual tv using opencv in python3.

Virtual-TV Creating a virtual tv using opencv in python3. In order to run the code follow the below given steps: Make sure the desired videos which ar

Vamsi 1 Jan 01, 2022
Python-based tools for document analysis and OCR

ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so

OCRopus 3.2k Dec 31, 2022
Indonesian ID Card OCR using tesseract OCR

KTP OCR Indonesian ID Card OCR using tesseract OCR KTP OCR is python-flask with tesseract web application to convert Indonesian ID Card to text / JSON

Revan Muhammad Dafa 5 Dec 06, 2021
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
In this project we will be using the live feed coming from the webcam to create a virtual mouse with complete functionalities.

Virtual Mouse Using OpenCV In this project we will be using the live feed coming from the webcam to create a virtual mouse using hand tracking. Projec

Hassan Shahzad 8 Dec 20, 2022
FastOCR is a desktop application for OCR API.

FastOCR FastOCR is a desktop application for OCR API. Installation Arch Linux fastocr-git @ AUR Build from AUR or install with your favorite AUR helpe

Bruce Zhang 58 Jan 07, 2023
A webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV.

Qbr Qbr, pronounced as Cuber, is a webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV. 🌈 Accurate color detection 🔍 Accurate 3x3x

Kim 金可明 502 Dec 29, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 04, 2023
Responsive Doc. scanner using U^2-Net, Textcleaner and Tesseract

Responsive Doc. scanner using U^2-Net, Textcleaner and Tesseract Toolset U^2-Net is used for background removal Textcleaner is used for image cleaning

3 Jul 13, 2022
Turn images of tables into CSV data. Detect tables from images and run OCR on the cells.

Table of Contents Overview Requirements Demo Modules Overview This python package contains modules to help with finding and extracting tabular data fr

Eric Ihli 311 Dec 24, 2022
Solution for Problem 1 by team codesquad for AIDL 2020. Uses ML Kit for OCR and OpenCV for image processing

CodeSquad PS1 Solution for Problem Statement 1 for AIDL 2020 conducted by @unifynd technologies. Problem Given images of bills/invoices, the task was

Burhanuddin Udaipurwala 111 Nov 27, 2022
An unofficial implementation of the paper "AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss".

AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss This is an unofficial implementation of AutoVC based on the official one. The reposi

Chien-yu Huang 27 Jun 16, 2022
Polaris is a Face recognition attendance system .

Support Me 🚀 About Polaris 📄 Polaris is a system based on facial recognition with a futuristic GUI design, Can easily find people informations store

XN3UR0N 215 Dec 26, 2022