Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

Overview

SA-AutoAug

Scale-aware Automatic Augmentation for Object Detection

Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia

[Paper] [BibTeX]


This project provides the implementation for the CVPR 2021 paper "Scale-aware Automatic Augmentation for Object Detection". Scale-aware AutoAug provides a new search space and search metric to find effective data agumentation policies for object detection. It is implemented on maskrcnn-benchmark and FCOS. Both search and training codes have been released. To facilitate more use, we re-implement the training code based on Detectron2.

Installation

For maskrcnn-benchmark code, please follow INSTALL.md for instruction.

For FCOS code, please follow INSTALL.md for instruction.

For Detectron2 code, please follow INSTALL.md for instruction.

Search

(You can skip this step and directly train on our searched policies.)

To search with 8 GPUs, run:

cd /path/to/SA-AutoAug/maskrcnn-benchmark
export NGPUS=8
python3 -m torch.distributed.launch --nproc_per_node=$NGPUS tools/search.py --config-file configs/SA_AutoAug/retinanet_R-50-FPN_search.yaml OURPUT_DIR /path/to/searchlog_dir

Since we finetune on an existing baseline model during search, a baseline model is needed. You can download this model for search, or you can use other Retinanet baseline model trained by yourself.

Training

To train the searched policies on maskrcnn-benchmark (FCOS)

cd /path/to/SA-AutoAug/maskrcnn-benchmark
export NGPUS=8
python3 -m torch.distributed.launch --nproc_per_node=$NGPUS tools/train_net.py --config-file configs/SA_AutoAug/CONFIG_FILE  OUTPUT_DIR /path/to/traininglog_dir

For example, to train the retinanet ResNet-50 model with our searched data augmentation policies in 6x schedule:

cd /path/to/SA-AutoAug/maskrcnn-benchmark
export NGPUS=8
python3 -m torch.distributed.launch --nproc_per_node=$NGPUS tools/train_net.py --config-file configs/SA_AutoAug/retinanet_R-50-FPN_6x.yaml  OUTPUT_DIR models/retinanet_R-50-FPN_6x_SAAutoAug

To train the searched policies on detectron2

cd /path/to/SA-AutoAug/detectron2
python3 ./tools/train_net.py --num-gpus 8 --config-file ./configs/COCO-Detection/SA_AutoAug/CONFIG_FILE OUTPUT_DIR /path/to/traininglog_dir

For example, to train the retinanet ResNet-50 model with our searched data augmentation policies in 6x schedule:

cd /path/to/SA-AutoAug/detectron2
python3 ./tools/train_net.py --num-gpus 8 --config-file ./configs/COCO-Detection/SA_AutoAug/retinanet_R_50_FPN_6x.yaml OUTPUT_DIR output_retinanet_R_50_FPN_6x_SAAutoAug

Results

We provide the results on COCO val2017 set with pretrained models.

Based on maskrcnn-benchmark

Method Backbone APbbox Download
Faster R-CNN ResNet-50 41.8 Model
Faster R-CNN ResNet-101 44.2 Model
RetinaNet ResNet-50 41.4 Model
RetinaNet ResNet-101 42.8 Model
Mask R-CNN ResNet-50 42.8 Model
Mask R-CNN ResNet-101 45.3 Model

Based on FCOS

Method Backbone APbbox Download
FCOS ResNet-50 42.6 Model
FCOS ResNet-101 44.0 Model
ATSS ResNext-101-32x8d-dcnv2 48.5 Model
ATSS ResNext-101-32x8d-dcnv2 (1200 size) 49.6 Model

Based on Detectron2

Method Backbone APbbox Download
Faster R-CNN ResNet-50 41.9 Model - Metrics
Faster R-CNN ResNet-101 44.2 Model - Metrics
RetinaNet ResNet-50 40.8 Model - Metrics
RetinaNet ResNet-101 43.1 Model - Metrics
Mask R-CNN ResNet-50 - Training
Mask R-CNN ResNet-101 - Training

Citing SA-AutoAug

Consider cite SA-Autoaug in your publications if it helps your research.

@inproceedings{saautoaug,
  title={Scale-aware Automatic Augmentation for Object Detection},
  author={Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

Acknowledgments

This training code of this project is built on maskrcnn-benchmark, Detectron2, FCOS, and ATSS. The search code of this project is modified from DetNAS. Some augmentation code and settings follow AutoAug-Det. We thanks a lot for the authors of these projects.

Note that:

(1) We also provides script files for search and training in maskrcnn-benchmark, FCOS, and, detectron2.

(2) Any issues or pull requests on this project are welcome. In addition, if you meet problems when applying the augmentations to other datasets or codebase, feel free to contact Yukang Chen ([email protected]).

Owner
Jia Research Lab
Research lab focusing on CV led by Prof. Jiaya Jia
Jia Research Lab
This is a implementation of CRAFT OCR method

This is a implementation of CRAFT OCR method

Esaka 0 Nov 01, 2021
This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries.

CVZone This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe librar

CVZone 648 Dec 30, 2022
Kornia is a open source differentiable computer vision library for PyTorch.

Open Source Differentiable Computer Vision Library

kornia 7.6k Jan 06, 2023
PAGE XML format collection for document image page content and more

PAGE-XML PAGE XML format collection for document image page content and more For an introduction, please see the following publication: http://www.pri

PRImA Research Lab 46 Nov 14, 2022
Some Boring Research About Products Recognition 、Duplicate Img Detection、Img Stitch、OCR

Products Recognition 介绍 商品识别,围绕在复杂的商场零售场景中,识别出货架图像中的商品信息。主要组成部分: 重复图像检测。【更新进度 4/10】 图像拼接。【更新进度 0/10】 目标检测。【更新进度 0/10】 商品识别。【更新进度 1/10】 OCR。【更新进度 1/10】

zhenjieWang 18 Jan 27, 2022
Source code of RRPN ---- Arbitrary-Oriented Scene Text Detection via Rotation Proposals

Paper source Arbitrary-Oriented Scene Text Detection via Rotation Proposals https://arxiv.org/abs/1703.01086 News We update RRPN in pytorch 1.0! View

428 Nov 22, 2022
A curated list of papers and resources for scene text detection and recognition

Awesome Scene Text A curated list of papers and resources for scene text detection and recognition The year when a paper was first published, includin

Jan Zdenek 43 Mar 15, 2022
Histogram specification using openCV in python .

histogram specification using openCV in python . Have to input miu and sigma to draw gausssian distribution which will be used to map the input image . Example input can be miu = 128 sigma = 30

Tamzid hasan 6 Nov 17, 2021
OCR, Scene-Text-Understanding, Text Recognition

Scene-Text-Understanding Survey [2015-PAMI] Text Detection and Recognition in Imagery: A Survey paper [2014-Front.Comput.Sci] Scene Text Detection and

Alan Tang 354 Dec 12, 2022
Fine tuning keras-ocr python package with custom synthetic dataset from scratch

OCR-Pipeline-with-Keras The keras-ocr package generally consists of two parts: a Detector and a Recognizer: Detector is responsible for creating bound

Eugene 1 Jan 05, 2022
SRA's seminar on Introduction to Computer Vision Fundamentals

Introduction to Computer Vision This repository includes basics to : Python Numpy: A python library Git Computer Vision. The aim of this repository is

Society of Robotics and Automation 147 Dec 04, 2022
Fatigue Driving Detection Based on Dlib

Fatigue Driving Detection Based on Dlib

5 Dec 14, 2022
This repository contains codes on how to handle mouse event using OpenCV

Handling-Mouse-Click-Events-Using-OpenCV This repository contains codes on how t

Happy N. Monday 3 Feb 15, 2022
Rotational region detection based on Faster-RCNN.

R2CNN_Faster_RCNN_Tensorflow Abstract This is a tensorflow re-implementation of R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detecti

UCAS-Det 581 Nov 22, 2022
Handwritten Number Recognition using CNN and Character Segmentation

Handwritten-Number-Recognition-With-Image-Segmentation Info About this repository This Repository is aimed at reading handwritten images of numbers an

Sparsha Saha 17 Aug 25, 2022
The virtual calculator will be above the live streaming from your camera

The virtual calculator is above the live streaming from my camera usb , the program first detect my hand and in each frame calculate the distance between two finger ,if the distance is lower than the

gasbaoui mohammed al amine 5 Jul 01, 2022
FOTS Pytorch Implementation

News!!! Recognition branch now is added into model. The whole project has beed optimized and refactored. ICDAR Dataset SynthText 800K Dataset detectio

Ning Lu 599 Dec 19, 2022
governance proposal to make fei redeemable for eth

Feil Proposal 🌲 Abstract Migrate all ETH from Fei protocol-controlled value into Yearn ETH Vault. Allow redemptions of outstanding FEI for yvETH. At

13 Mar 31, 2022
WACV 2022 Paper - Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching

Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching Code based on our WACV 2022 Accepted Paper: https://arxiv.org/pdf/

Andres 13 Dec 17, 2022
一款基于Qt与OpenCV的仿真数字示波器

一款基于Qt与OpenCV的仿真数字示波器

郭赟 4 Nov 02, 2022