Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

Overview

SA-AutoAug

Scale-aware Automatic Augmentation for Object Detection

Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia

[Paper] [BibTeX]


This project provides the implementation for the CVPR 2021 paper "Scale-aware Automatic Augmentation for Object Detection". Scale-aware AutoAug provides a new search space and search metric to find effective data agumentation policies for object detection. It is implemented on maskrcnn-benchmark and FCOS. Both search and training codes have been released. To facilitate more use, we re-implement the training code based on Detectron2.

Installation

For maskrcnn-benchmark code, please follow INSTALL.md for instruction.

For FCOS code, please follow INSTALL.md for instruction.

For Detectron2 code, please follow INSTALL.md for instruction.

Search

(You can skip this step and directly train on our searched policies.)

To search with 8 GPUs, run:

cd /path/to/SA-AutoAug/maskrcnn-benchmark
export NGPUS=8
python3 -m torch.distributed.launch --nproc_per_node=$NGPUS tools/search.py --config-file configs/SA_AutoAug/retinanet_R-50-FPN_search.yaml OURPUT_DIR /path/to/searchlog_dir

Since we finetune on an existing baseline model during search, a baseline model is needed. You can download this model for search, or you can use other Retinanet baseline model trained by yourself.

Training

To train the searched policies on maskrcnn-benchmark (FCOS)

cd /path/to/SA-AutoAug/maskrcnn-benchmark
export NGPUS=8
python3 -m torch.distributed.launch --nproc_per_node=$NGPUS tools/train_net.py --config-file configs/SA_AutoAug/CONFIG_FILE  OUTPUT_DIR /path/to/traininglog_dir

For example, to train the retinanet ResNet-50 model with our searched data augmentation policies in 6x schedule:

cd /path/to/SA-AutoAug/maskrcnn-benchmark
export NGPUS=8
python3 -m torch.distributed.launch --nproc_per_node=$NGPUS tools/train_net.py --config-file configs/SA_AutoAug/retinanet_R-50-FPN_6x.yaml  OUTPUT_DIR models/retinanet_R-50-FPN_6x_SAAutoAug

To train the searched policies on detectron2

cd /path/to/SA-AutoAug/detectron2
python3 ./tools/train_net.py --num-gpus 8 --config-file ./configs/COCO-Detection/SA_AutoAug/CONFIG_FILE OUTPUT_DIR /path/to/traininglog_dir

For example, to train the retinanet ResNet-50 model with our searched data augmentation policies in 6x schedule:

cd /path/to/SA-AutoAug/detectron2
python3 ./tools/train_net.py --num-gpus 8 --config-file ./configs/COCO-Detection/SA_AutoAug/retinanet_R_50_FPN_6x.yaml OUTPUT_DIR output_retinanet_R_50_FPN_6x_SAAutoAug

Results

We provide the results on COCO val2017 set with pretrained models.

Based on maskrcnn-benchmark

Method Backbone APbbox Download
Faster R-CNN ResNet-50 41.8 Model
Faster R-CNN ResNet-101 44.2 Model
RetinaNet ResNet-50 41.4 Model
RetinaNet ResNet-101 42.8 Model
Mask R-CNN ResNet-50 42.8 Model
Mask R-CNN ResNet-101 45.3 Model

Based on FCOS

Method Backbone APbbox Download
FCOS ResNet-50 42.6 Model
FCOS ResNet-101 44.0 Model
ATSS ResNext-101-32x8d-dcnv2 48.5 Model
ATSS ResNext-101-32x8d-dcnv2 (1200 size) 49.6 Model

Based on Detectron2

Method Backbone APbbox Download
Faster R-CNN ResNet-50 41.9 Model - Metrics
Faster R-CNN ResNet-101 44.2 Model - Metrics
RetinaNet ResNet-50 40.8 Model - Metrics
RetinaNet ResNet-101 43.1 Model - Metrics
Mask R-CNN ResNet-50 - Training
Mask R-CNN ResNet-101 - Training

Citing SA-AutoAug

Consider cite SA-Autoaug in your publications if it helps your research.

@inproceedings{saautoaug,
  title={Scale-aware Automatic Augmentation for Object Detection},
  author={Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

Acknowledgments

This training code of this project is built on maskrcnn-benchmark, Detectron2, FCOS, and ATSS. The search code of this project is modified from DetNAS. Some augmentation code and settings follow AutoAug-Det. We thanks a lot for the authors of these projects.

Note that:

(1) We also provides script files for search and training in maskrcnn-benchmark, FCOS, and, detectron2.

(2) Any issues or pull requests on this project are welcome. In addition, if you meet problems when applying the augmentations to other datasets or codebase, feel free to contact Yukang Chen ([email protected]).

Owner
Jia Research Lab
Research lab focusing on CV led by Prof. Jiaya Jia
Jia Research Lab
STEFANN: Scene Text Editor using Font Adaptive Neural Network

STEFANN: Scene Text Editor using Font Adaptive Neural Network @ The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020.

Prasun Roy 208 Dec 11, 2022
Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.

Sign Language Recognition Service This is a Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform s

Martin Lønne 1 Jan 08, 2022
Erosion and dialation using structure element in OpenCV python

Erosion and dialation using structure element in OpenCV python

Tamzid hasan 2 Nov 11, 2021
Face Recognizer using Opencv Python

Face Recognizer using Opencv Python The first step create your own dataset with file open-cv-create_dataset second step You can put the photo accordin

Han Izza 2 Nov 16, 2021
A buffered and threaded wrapper for the OpenCV VideoCapture object. Can speed up video decoding significantly. Supports

A buffered and threaded wrapper for the OpenCV VideoCapture object. Can speed up video decoding significantly. Supports "with"-syntax.

Patrice Matz 0 Oct 30, 2021
A python program to block out your face

Readme This is a small program I threw together in about 6 hours to block out your face. It probably doesn't work very well, so be warned. By default,

1 Oct 17, 2021
Automatically download multiple papers by keywords in CVPR

CVFPaperHelper Automatically download multiple papers by keywords in CVPR Install mkdir PapersToRead cd PaperToRead pip install requests tqdm git clon

46 Jun 08, 2022
The CIS OCR PostCorrectionTool

The CIS OCR Post Correction Tool PoCoTo Source code for the Java-based PoCoTo client enabling fast interactive batch corrections of complete OCR error

CIS OCR Group 36 Dec 15, 2022
Virtualdragdrop - Virtual Drag and Drop Using OpenCV and Arduino

Virtualdragdrop - Virtual Drag and Drop Using OpenCV and Arduino

Rizky Dermawan 4 Mar 10, 2022
Amazing 3D explosion animation using Pygame module.

3D Explosion Animation 💣 💥 🔥 Amazing explosion animation with Pygame. 💣 Explosion physics An Explosion instance is made of a set of Particle objec

Dylan Tintenfich 12 Mar 11, 2022
scene-linear test images

Scene-Referred Image Collection A collection of OpenEXR Scene-Referred images, encoded as max 2048px width, DWAA 80 compression. All exrs are encoded

Gralk Klorggson 7 Aug 25, 2022
1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge

SIIM-COVID19-Detection Source code of the 1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge. 1.INSTALLATION Ubuntu 18.04.5 LTS CUD

Nguyen Ba Dung 170 Dec 21, 2022
An unofficial implementation of the paper "AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss".

AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss This is an unofficial implementation of AutoVC based on the official one. The reposi

Chien-yu Huang 27 Jun 16, 2022
Fine tuning keras-ocr python package with custom synthetic dataset from scratch

OCR-Pipeline-with-Keras The keras-ocr package generally consists of two parts: a Detector and a Recognizer: Detector is responsible for creating bound

Eugene 1 Jan 05, 2022
Pixie - A full-featured 2D graphics library for Python

Pixie - A full-featured 2D graphics library for Python Pixie is a 2D graphics library similar to Cairo and Skia. pip install pixie-python Features: Ty

treeform 65 Dec 30, 2022
document image degradation

ocrodeg The ocrodeg package is a small Python library implementing document image degradation for data augmentation for handwriting recognition and OC

NVIDIA Research Projects 134 Nov 18, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 47k Jan 07, 2023
Fully-automated scripts for collecting AI-related papers

AI-Paper-Collector Web demo: https://ai-paper-collector.vercel.app/ (recommended) Colab notebook: here Motivation Fully-automated scripts for collecti

772 Dec 30, 2022
Tesseract Open Source OCR Engine (main repository)

Tesseract OCR About This package contains an OCR engine - libtesseract and a command line program - tesseract. Tesseract 4 adds a new neural net (LSTM

48.4k Jan 09, 2023