document image degradation

Overview

ocrodeg

The ocrodeg package is a small Python library implementing document image degradation for data augmentation for handwriting recognition and OCR applications.

The following illustrates the kinds of degradations available from ocrodeg.

%pylab inline
Populating the interactive namespace from numpy and matplotlib
rc("image", cmap="gray", interpolation="bicubic")
figsize(10, 10)
import scipy.ndimage as ndi
import ocrodeg

image = imread("testdata/W1P0.png")
imshow(image)
<matplotlib.image.AxesImage at 0x7fabcc7ab390>

png

PAGE ROTATION

This is just for illustration; for large page rotations, you can just use ndimage.

for i, angle in enumerate([0, 90, 180, 270]):
    subplot(2, 2, i+1)
    imshow(ndi.rotate(image, angle))

png

RANDOM GEOMETRIC TRANSFORMATIONS

random_transform generates random transformation parameters that work reasonably well for document image degradation. You can override the ranges used by each of these parameters by keyword arguments.

ocrodeg.random_transform()
{'angle': -0.016783842893063807,
 'aniso': 0.805280370671964,
 'scale': 0.9709145529604223,
 'translation': (0.014319657859164045, 0.03676897986267606)}

Here are four samples generated by random transforms.

for i in xrange(4):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, **ocrodeg.random_transform()))

png

You can use transform_image directly with the different parameters to get a feel for the ranges and effects of these parameters.

for i, angle in enumerate([-2, -1, 0, 1]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, angle=angle*pi/180))

png

for i, angle in enumerate([-2, -1, 0, 1]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, angle=angle*pi/180)[1000:1500, 750:1250])

png

for i, aniso in enumerate([0.5, 1.0, 1.5, 2.0]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, aniso=aniso))

png

for i, aniso in enumerate([0.5, 1.0, 1.5, 2.0]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, aniso=aniso)[1000:1500, 750:1250])

png

for i, scale in enumerate([0.5, 0.9, 1.0, 2.0]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, scale=scale))

png

for i, scale in enumerate([0.5, 0.9, 1.0, 2.0]):
    subplot(2, 2, i+1)
    h, w = image.shape
    imshow(ocrodeg.transform_image(image, scale=scale)[h//2-200:h//2+200, w//3-200:w//3+200])

png

RANDOM DISTORTIONS

Pages often also have a small degree of warping. This can be modeled by random distortions. Very small and noisy random distortions also model ink spread, while large 1D random distortions model paper curl.

for i, sigma in enumerate([1.0, 2.0, 5.0, 20.0]):
    subplot(2, 2, i+1)
    noise = ocrodeg.bounded_gaussian_noise(image.shape, sigma, 5.0)
    distorted = ocrodeg.distort_with_noise(image, noise)
    h, w = image.shape
    imshow(distorted[h//2-200:h//2+200, w//3-200:w//3+200])

png

RULED SURFACE DISTORTIONS

for i, mag in enumerate([5.0, 20.0, 100.0, 200.0]):
    subplot(2, 2, i+1)
    noise = ocrodeg.noise_distort1d(image.shape, magnitude=mag)
    distorted = ocrodeg.distort_with_noise(image, noise)
    h, w = image.shape
    imshow(distorted[:1500])

png

BLUR, THRESHOLDING, NOISE

There are a range of utilities for modeling imaging artifacts: blurring, noise, inkspread.

patch = image[1900:2156, 1000:1256]
imshow(patch)
<matplotlib.image.AxesImage at 0x7fabc88c7e10>

png

for i, s in enumerate([0, 1, 2, 4]):
    subplot(2, 2, i+1)
    blurred = ndi.gaussian_filter(patch, s)
    imshow(blurred)

png

for i, s in enumerate([0, 1, 2, 4]):
    subplot(2, 2, i+1)
    blurred = ndi.gaussian_filter(patch, s)
    thresholded = 1.0*(blurred>0.5)
    imshow(thresholded)

png

reload(ocrodeg)
for i, s in enumerate([0.0, 1.0, 2.0, 4.0]):
    subplot(2, 2, i+1)
    blurred = ocrodeg.binary_blur(patch, s)
    imshow(blurred)

png

for i, s in enumerate([0.0, 0.1, 0.2, 0.3]):
    subplot(2, 2, i+1)
    blurred = ocrodeg.binary_blur(patch, 2.0, noise=s)
    imshow(blurred)

png

MULTISCALE NOISE

reload(ocrodeg)
for i in range(4):
    noisy = ocrodeg.make_multiscale_noise_uniform((512, 512))
    subplot(2, 2, i+1); imshow(noisy, vmin=0, vmax=1)

png

RANDOM BLOBS

for i, s in enumerate([2, 5, 10, 20]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.random_blobs(patch.shape, 3e-4, s))

png

reload(ocrodeg)
blotched = ocrodeg.random_blotches(patch, 3e-4, 1e-4)
#blotched = minimum(maximum(patch, ocrodeg.random_blobs(patch.shape, 30, 10)), 1-ocrodeg.random_blobs(patch.shape, 15, 8))
subplot(121); imshow(patch); subplot(122); imshow(blotched)
<matplotlib.image.AxesImage at 0x7fabc8a35490>

png

FIBROUS NOISE

imshow(ocrodeg.make_fibrous_image((256, 256), 700, 300, 0.01))
<matplotlib.image.AxesImage at 0x7fabc8852450>

png

FOREGROUND / BACKGROUND SELECTION

subplot(121); imshow(patch); subplot(122); imshow(ocrodeg.printlike_multiscale(patch))
<matplotlib.image.AxesImage at 0x7fabc8676d90>

png

subplot(121); imshow(patch); subplot(122); imshow(ocrodeg.printlike_fibrous(patch))
<matplotlib.image.AxesImage at 0x7fabc8d1b250>

png

Owner
NVIDIA Research Projects
NVIDIA Research Projects
天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 - 第三名解决方案

天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 比赛链接 个人博客记录 目录结构 ├── final------------------------------------决赛方案PPT ├── preliminary_contest--------------------

19 Aug 17, 2022
The code of "Mask TextSpotter: An End-to-End Trainable Neural Network for Spotting Text with Arbitrary Shapes"

Mask TextSpotter A Pytorch implementation of Mask TextSpotter along with its extension can be find here Introduction This is the official implementati

Pengyuan Lyu 261 Nov 21, 2022
Play the Namibian game of Owela against a terrible AI. Built using Django and htmx.

Owela Club A Django project for playing the Namibian game of Owela against a dumb AI. Built following the rules described on the Mancala World wiki pa

Adam Johnson 18 Jun 01, 2022
第一届西安交通大学人工智能实践大赛(2018AI实践大赛--图片文字识别)第一名;仅采用densenet识别图中文字

OCR 第一届西安交通大学人工智能实践大赛(2018AI实践大赛--图片文字识别)冠军 模型结果 该比赛计算每一个条目的f1score,取所有条目的平均,具体计算方式在这里。这里的计算方式不对一句话里的相同文字重复计算,故f1score比提交的最终结果低: - train val f1score 0

尹畅 441 Dec 22, 2022
Fast style transfer

faststyle Faststyle aims to provide an easy and modular interface to Image to Image problems based on feature loss. Install Making sure you have a wor

Lucas Vazquez 21 Mar 11, 2022
Papers, Datasets, Algorithms, SOTA for STR. Long-time Maintaining

Scene Text Recognition Recommendations Everythin about Scene Text Recognition SOTA • Papers • Datasets • Code Contents 1. Papers 2. Datasets 2.1 Synth

Deep Learning and Vision Computing Lab, SCUT 197 Jan 05, 2023
Character Segmentation using TensorFlow

Character Segmentation Segment characters and spaces in one text line,from this paper Chinese English mixed Character Segmentation as Semantic Segment

26 Aug 25, 2022
A Vietnamese personal card OCR website built with Django.

Django VietCardOCR Installation Creation of virtual environments is done by executing the command venv: python -m venv venv That will create a new fol

Truong Hoang Thuan 4 Sep 04, 2021
Face_mosaic - Mosaic blur processing is applied to multiple faces appearing in the video

動機 face_recognitionを使用して得られる顔座標は長方形であり、この座標をそのまま用いてぼかし処理を行った場合得られる画像は醜い。 それに対してモ

Yoshitsugu Kesamaru 6 Feb 03, 2022
Deskewing images with slanted content

skew_correction De-skewing images with slanted content by finding the deviation using Canny Edge Detection. To Run: In python 3.6, from deskew import

13 Aug 27, 2022
Handwritten Text Recognition (HTR) using TensorFlow 2.x

Handwritten Text Recognition (HTR) system implemented using TensorFlow 2.x and trained on the Bentham/IAM/Rimes/Saint Gall/Washington offline HTR data

Arthur Flôr 160 Dec 21, 2022
graph learning code for ogb

The final code for OGB Installation Requirements: ogb=1.3.1 torch=1.7.0 torch-geometric=1.7.0 torch-scatter=2.0.6 torch-sparse=0.6.9 Baseline models T

PierreHao 20 Nov 10, 2022
This repository summarized computer vision theories.

This repository summarized computer vision theories.

3 Feb 04, 2022
Localization of thoracic abnormalities model based on VinBigData (top 1%)

Repository contains the code for 2nd place solution of VinBigData Chest X-ray Abnormalities Detection competition. The goal of competition was to auto

33 May 24, 2022
Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Daniel Jarrett 26 Jun 17, 2021
Learn computer graphics by writing GPU shaders!

This repo contains a selection of projects designed to help you learn the basics of computer graphics. We'll be writing shaders to render interactive two-dimensional and three-dimensional scenes.

Eric Zhang 1.9k Jan 02, 2023
BNF Globalization Code (CVPR 2016)

Boundary Neural Fields Globalization This is the code for Boundary Neural Fields globalization method. The technical report of the method can be found

25 Apr 15, 2022
A curated list of papers and resources for scene text detection and recognition

Awesome Scene Text A curated list of papers and resources for scene text detection and recognition The year when a paper was first published, includin

Jan Zdenek 43 Mar 15, 2022
Augmenting Anchors by the Detector Itself

Augmenting Anchors by the Detector Itself Introduction It is difficult to determine the scale and aspect ratio of anchors for anchor-based object dete

4 Nov 06, 2022
Distilling Knowledge via Knowledge Review, CVPR 2021

ReviewKD Distilling Knowledge via Knowledge Review Pengguang Chen, Shu Liu, Hengshuang Zhao, Jiaya Jia This project provides an implementation for the

DV Lab 194 Dec 28, 2022