Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"

Overview

UNITER: UNiversal Image-TExt Representation Learning

This is the official repository of UNITER (ECCV 2020). This repository currently supports finetuning UNITER on NLVR2, VQA, VCR, SNLI-VE, Image-Text Retrieval for COCO and Flickr30k, and Referring Expression Comprehensions (RefCOCO, RefCOCO+, and RefCOCO-g). Both UNITER-base and UNITER-large pre-trained checkpoints are released. UNITER-base pre-training with in-domain data is also available.

Overview of UNITER

Some code in this repo are copied/modified from opensource implementations made available by PyTorch, HuggingFace, OpenNMT, and Nvidia. The image features are extracted using BUTD.

Requirements

We provide Docker image for easier reproduction. Please install the following:

Our scripts require the user to have the docker group membership so that docker commands can be run without sudo. We only support Linux with NVIDIA GPUs. We test on Ubuntu 18.04 and V100 cards. We use mixed-precision training hence GPUs with Tensor Cores are recommended.

Quick Start

NOTE: Please run bash scripts/download_pretrained.sh $PATH_TO_STORAGE to get our latest pretrained checkpoints. This will download both the base and large models.

We use NLVR2 as an end-to-end example for using this code base.

  1. Download processed data and pretrained models with the following command.

    bash scripts/download_nlvr2.sh $PATH_TO_STORAGE

    After downloading you should see the following folder structure:

    ├── ann
    │   ├── dev.json
    │   └── test1.json
    ├── finetune
    │   ├── nlvr-base
    │   └── nlvr-base.tar
    ├── img_db
    │   ├── nlvr2_dev
    │   ├── nlvr2_dev.tar
    │   ├── nlvr2_test
    │   ├── nlvr2_test.tar
    │   ├── nlvr2_train
    │   └── nlvr2_train.tar
    ├── pretrained
    │   └── uniter-base.pt
    └── txt_db
        ├── nlvr2_dev.db
        ├── nlvr2_dev.db.tar
        ├── nlvr2_test1.db
        ├── nlvr2_test1.db.tar
        ├── nlvr2_train.db
        └── nlvr2_train.db.tar
    
  2. Launch the Docker container for running the experiments.

    # docker image should be automatically pulled
    source launch_container.sh $PATH_TO_STORAGE/txt_db $PATH_TO_STORAGE/img_db \
        $PATH_TO_STORAGE/finetune $PATH_TO_STORAGE/pretrained

    The launch script respects $CUDA_VISIBLE_DEVICES environment variable. Note that the source code is mounted into the container under /src instead of built into the image so that user modification will be reflected without re-building the image. (Data folders are mounted into the container separately for flexibility on folder structures.)

  3. Run finetuning for the NLVR2 task.

    # inside the container
    python train_nlvr2.py --config config/train-nlvr2-base-1gpu.json
    
    # for more customization
    horovodrun -np $N_GPU python train_nlvr2.py --config $YOUR_CONFIG_JSON
  4. Run inference for the NLVR2 task and then evaluate.

    # inference
    python inf_nlvr2.py --txt_db /txt/nlvr2_test1.db/ --img_db /img/nlvr2_test/ \
        --train_dir /storage/nlvr-base/ --ckpt 6500 --output_dir . --fp16
    
    # evaluation
    # run this command outside docker (tested with python 3.6)
    # or copy the annotation json into mounted folder
    python scripts/eval_nlvr2.py ./results.csv $PATH_TO_STORAGE/ann/test1.json

    The above command runs inference on the model we trained. Feel free to replace --train_dir and --ckpt with your own model trained in step 3. Currently we only support single GPU inference.

  5. Customization

    # training options
    python train_nlvr2.py --help
    • command-line argument overwrites JSON config files
    • JSON config overwrites argparse default value.
    • use horovodrun to run multi-GPU training
    • --gradient_accumulation_steps emulates multi-gpu training
  6. Misc.

    # text annotation preprocessing
    bash scripts/create_txtdb.sh $PATH_TO_STORAGE/txt_db $PATH_TO_STORAGE/ann
    
    # image feature extraction (Tested on Titan-Xp; may not run on latest GPUs)
    bash scripts/extract_imgfeat.sh $PATH_TO_IMG_FOLDER $PATH_TO_IMG_NPY
    
    # image preprocessing
    bash scripts/create_imgdb.sh $PATH_TO_IMG_NPY $PATH_TO_STORAGE/img_db

    In case you would like to reproduce the whole preprocessing pipeline.

Downstream Tasks Finetuning

VQA

NOTE: train and inference should be ran inside the docker container

  1. download data
    bash scripts/download_vqa.sh $PATH_TO_STORAGE
    
  2. train
    horovodrun -np 4 python train_vqa.py --config config/train-vqa-base-4gpu.json \
        --output_dir $VQA_EXP
    
  3. inference
    python inf_vqa.py --txt_db /txt/vqa_test.db --img_db /img/coco_test2015 \
        --output_dir $VQA_EXP --checkpoint 6000 --pin_mem --fp16
    
    The result file will be written at $VQA_EXP/results_test/results_6000_all.json, which can be submitted to the evaluation server

VCR

NOTE: train and inference should be ran inside the docker container

  1. download data
    bash scripts/download_vcr.sh $PATH_TO_STORAGE
    
  2. train
    horovodrun -np 4 python train_vcr.py --config config/train-vcr-base-4gpu.json \
        --output_dir $VCR_EXP
    
  3. inference
    horovodrun -np 4 python inf_vcr.py --txt_db /txt/vcr_test.db \
        --img_db "/img/vcr_gt_test/;/img/vcr_test/" \
        --split test --output_dir $VCR_EXP --checkpoint 8000 \
        --pin_mem --fp16
    
    The result file will be written at $VCR_EXP/results_test/results_8000_all.csv, which can be submitted to VCR leaderboard for evluation.

VCR 2nd Stage Pre-training

NOTE: pretrain should be ran inside the docker container

  1. download VCR data if you haven't
    bash scripts/download_vcr.sh $PATH_TO_STORAGE
    
  2. 2nd stage pre-train
    horovodrun -np 4 python pretrain_vcr.py --config config/pretrain-vcr-base-4gpu.json \
        --output_dir $PRETRAIN_VCR_EXP
    

Visual Entailment (SNLI-VE)

NOTE: train should be ran inside the docker container

  1. download data
    bash scripts/download_ve.sh $PATH_TO_STORAGE
    
  2. train
    horovodrun -np 2 python train_ve.py --config config/train-ve-base-2gpu.json \
        --output_dir $VE_EXP
    

Image-Text Retrieval

download data

bash scripts/download_itm.sh $PATH_TO_STORAGE

NOTE: Image-Text Retrieval is computationally heavy, especially on COCO.

Zero-shot Image-Text Retrieval (Flickr30k)

# every image-text pair has to be ranked; please use as many GPUs as possible
horovodrun -np $NGPU python inf_itm.py \
    --txt_db /txt/itm_flickr30k_test.db --img_db /img/flickr30k \
    --checkpoint /pretrain/uniter-base.pt --model_config /src/config/uniter-base.json \
    --output_dir $ZS_ITM_RESULT --fp16 --pin_mem

Image-Text Retrieval (Flickr30k)

  • normal finetune
    horovodrun -np 8 python train_itm.py --config config/train-itm-flickr-base-8gpu.json
    
  • finetune with hard negatives
    horovodrun -np 16 python train_itm_hard_negatives.py \
        --config config/train-itm-flickr-base-16gpu-hn.jgon
    

Image-Text Retrieval (COCO)

  • finetune with hard negatives
    horovodrun -np 16 python train_itm_hard_negatives.py \
        --config config/train-itm-coco-base-16gpu-hn.json
    

Referring Expressions

  1. download data
    bash scripts/download_re.sh $PATH_TO_STORAGE
    
  2. train
    python train_re.py --config config/train-refcoco-base-1gpu.json \
        --output_dir $RE_EXP
    
  3. inference and evaluation
    source scripts/eval_refcoco.sh $RE_EXP
    
    The result files will be written under $RE_EXP/results_test/

Similarly, change corresponding configs/scripts for running RefCOCO+/RefCOCOg.

Pre-tranining

download

bash scripts/download_indomain.sh $PATH_TO_STORAGE

pre-train

horovodrun -np 8 python pretrain.py --config config/pretrain-indomain-base-8gpu.json \
    --output_dir $PRETRAIN_EXP

Unfortunately, we cannot host CC/SBU features due to their large size. Users will need to process them on their own. We will provide a smaller sample for easier reference to the expected format soon.

Citation

If you find this code useful for your research, please consider citing:

@inproceedings{chen2020uniter,
  title={Uniter: Universal image-text representation learning},
  author={Chen, Yen-Chun and Li, Linjie and Yu, Licheng and Kholy, Ahmed El and Ahmed, Faisal and Gan, Zhe and Cheng, Yu and Liu, Jingjing},
  booktitle={ECCV},
  year={2020}
}

License

MIT

Owner
Yen-Chun Chen
Researcher @ Microsoft Cloud+AI. previously Machine Learning Scientist @ Stackline; M.S. student @ UNC Chapel Hill NLP group
Yen-Chun Chen
Neural network sequence labeling model

Sequence labeler This is a neural network sequence labeling system. Given a sequence of tokens, it will learn to assign labels to each token. Can be u

Marek Rei 250 Nov 03, 2022
KoBERT - Korean BERT pre-trained cased (KoBERT)

KoBERT KoBERT Korean BERT pre-trained cased (KoBERT) Why'?' Training Environment Requirements How to install How to use Using with PyTorch Using with

SK T-Brain 1k Jan 02, 2023
Code for hyperboloid embeddings for knowledge graph entities

Implementation for the papers: Self-Supervised Hyperboloid Representations from Logical Queries over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao,

30 Dec 10, 2022
Open-source offline translation library written in Python. Uses OpenNMT for translations

Open source neural machine translation in Python. Designed to be used either as a Python library or desktop application. Uses OpenNMT for translations and PyQt for GUI.

Argos Open Tech 1.6k Jan 01, 2023
Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors"

SWRM Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors" Clone Clone th

14 Jan 03, 2023
A flask application to predict the speech emotion of any .wav file.

This is a speech emotion recognition app. It will allow you to train a modular MLP model with the RAVDESS dataset, and then use that model with a flask application to predict the speech emotion of an

Aryan Vijaywargia 2 Dec 15, 2021
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
The training code for the 4th place model at MDX 2021 leaderboard A.

The training code for the 4th place model at MDX 2021 leaderboard A.

Chin-Yun Yu 32 Dec 18, 2022
Blue Brain text mining toolbox for semantic search and structured information extraction

Blue Brain Search Source Code DOI Data & Models DOI Documentation Latest Release Python Versions License Build Status Static Typing Code Style Securit

The Blue Brain Project 29 Dec 01, 2022
a chinese segment base on crf

Genius Genius是一个开源的python中文分词组件,采用 CRF(Conditional Random Field)条件随机场算法。 Feature 支持python2.x、python3.x以及pypy2.x。 支持简单的pinyin分词 支持用户自定义break 支持用户自定义合并词

duanhongyi 237 Nov 04, 2022
NLP and Text Generation Experiments in TensorFlow 2.x / 1.x

Code has been run on Google Colab, thanks Google for providing computational resources Contents Natural Language Processing(自然语言处理) Text Classificati

1.5k Nov 14, 2022
Harvis is designed to automate your C2 Infrastructure.

Harvis Harvis is designed to automate your C2 Infrastructure, currently using Mythic C2. 📌 What is it? Harvis is a python tool to help you create mul

Thiago Mayllart 99 Oct 06, 2022
Just a basic Telegram AI chat bot written in Python using Pyrogram.

Nikko ChatBot Just a basic Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher. A bot token. Installation $ https

ʀᴇxɪɴᴀᴢᴏʀ 2 Oct 21, 2022
NLP applications using deep learning.

NLP-Natural-Language-Processing NLP applications using deep learning like text generation etc. 1- Poetry Generation: Using a collection of Irish Poem

KASHISH 1 Jan 27, 2022
Ukrainian TTS (text-to-speech) using Coqui TTS

title emoji colorFrom colorTo sdk app_file pinned Ukrainian TTS 🐸 green green gradio app.py false Ukrainian TTS 📢 🤖 Ukrainian TTS (text-to-speech)

Yurii Paniv 85 Dec 26, 2022
A sample project that exists for PyPUG's "Tutorial on Packaging and Distributing Projects"

A sample Python project A sample project that exists as an aid to the Python Packaging User Guide's Tutorial on Packaging and Distributing Projects. T

Python Packaging Authority 4.5k Dec 30, 2022
Chinese real time voice cloning (VC) and Chinese text to speech (TTS).

Chinese real time voice cloning (VC) and Chinese text to speech (TTS). 好用的中文语音克隆兼中文语音合成系统,包含语音编码器、语音合成器、声码器和可视化模块。

Kuang Dada 6 Nov 08, 2022
This repository contains all the source code that is needed for the project : An Efficient Pipeline For Bloom’s Taxonomy Using Natural Language Processing and Deep Learning

Pipeline For NLP with Bloom's Taxonomy Using Improved Question Classification and Question Generation using Deep Learning This repository contains all

Rohan Mathur 9 Jul 17, 2021
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023