Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"

Overview

UNITER: UNiversal Image-TExt Representation Learning

This is the official repository of UNITER (ECCV 2020). This repository currently supports finetuning UNITER on NLVR2, VQA, VCR, SNLI-VE, Image-Text Retrieval for COCO and Flickr30k, and Referring Expression Comprehensions (RefCOCO, RefCOCO+, and RefCOCO-g). Both UNITER-base and UNITER-large pre-trained checkpoints are released. UNITER-base pre-training with in-domain data is also available.

Overview of UNITER

Some code in this repo are copied/modified from opensource implementations made available by PyTorch, HuggingFace, OpenNMT, and Nvidia. The image features are extracted using BUTD.

Requirements

We provide Docker image for easier reproduction. Please install the following:

Our scripts require the user to have the docker group membership so that docker commands can be run without sudo. We only support Linux with NVIDIA GPUs. We test on Ubuntu 18.04 and V100 cards. We use mixed-precision training hence GPUs with Tensor Cores are recommended.

Quick Start

NOTE: Please run bash scripts/download_pretrained.sh $PATH_TO_STORAGE to get our latest pretrained checkpoints. This will download both the base and large models.

We use NLVR2 as an end-to-end example for using this code base.

  1. Download processed data and pretrained models with the following command.

    bash scripts/download_nlvr2.sh $PATH_TO_STORAGE

    After downloading you should see the following folder structure:

    ├── ann
    │   ├── dev.json
    │   └── test1.json
    ├── finetune
    │   ├── nlvr-base
    │   └── nlvr-base.tar
    ├── img_db
    │   ├── nlvr2_dev
    │   ├── nlvr2_dev.tar
    │   ├── nlvr2_test
    │   ├── nlvr2_test.tar
    │   ├── nlvr2_train
    │   └── nlvr2_train.tar
    ├── pretrained
    │   └── uniter-base.pt
    └── txt_db
        ├── nlvr2_dev.db
        ├── nlvr2_dev.db.tar
        ├── nlvr2_test1.db
        ├── nlvr2_test1.db.tar
        ├── nlvr2_train.db
        └── nlvr2_train.db.tar
    
  2. Launch the Docker container for running the experiments.

    # docker image should be automatically pulled
    source launch_container.sh $PATH_TO_STORAGE/txt_db $PATH_TO_STORAGE/img_db \
        $PATH_TO_STORAGE/finetune $PATH_TO_STORAGE/pretrained

    The launch script respects $CUDA_VISIBLE_DEVICES environment variable. Note that the source code is mounted into the container under /src instead of built into the image so that user modification will be reflected without re-building the image. (Data folders are mounted into the container separately for flexibility on folder structures.)

  3. Run finetuning for the NLVR2 task.

    # inside the container
    python train_nlvr2.py --config config/train-nlvr2-base-1gpu.json
    
    # for more customization
    horovodrun -np $N_GPU python train_nlvr2.py --config $YOUR_CONFIG_JSON
  4. Run inference for the NLVR2 task and then evaluate.

    # inference
    python inf_nlvr2.py --txt_db /txt/nlvr2_test1.db/ --img_db /img/nlvr2_test/ \
        --train_dir /storage/nlvr-base/ --ckpt 6500 --output_dir . --fp16
    
    # evaluation
    # run this command outside docker (tested with python 3.6)
    # or copy the annotation json into mounted folder
    python scripts/eval_nlvr2.py ./results.csv $PATH_TO_STORAGE/ann/test1.json

    The above command runs inference on the model we trained. Feel free to replace --train_dir and --ckpt with your own model trained in step 3. Currently we only support single GPU inference.

  5. Customization

    # training options
    python train_nlvr2.py --help
    • command-line argument overwrites JSON config files
    • JSON config overwrites argparse default value.
    • use horovodrun to run multi-GPU training
    • --gradient_accumulation_steps emulates multi-gpu training
  6. Misc.

    # text annotation preprocessing
    bash scripts/create_txtdb.sh $PATH_TO_STORAGE/txt_db $PATH_TO_STORAGE/ann
    
    # image feature extraction (Tested on Titan-Xp; may not run on latest GPUs)
    bash scripts/extract_imgfeat.sh $PATH_TO_IMG_FOLDER $PATH_TO_IMG_NPY
    
    # image preprocessing
    bash scripts/create_imgdb.sh $PATH_TO_IMG_NPY $PATH_TO_STORAGE/img_db

    In case you would like to reproduce the whole preprocessing pipeline.

Downstream Tasks Finetuning

VQA

NOTE: train and inference should be ran inside the docker container

  1. download data
    bash scripts/download_vqa.sh $PATH_TO_STORAGE
    
  2. train
    horovodrun -np 4 python train_vqa.py --config config/train-vqa-base-4gpu.json \
        --output_dir $VQA_EXP
    
  3. inference
    python inf_vqa.py --txt_db /txt/vqa_test.db --img_db /img/coco_test2015 \
        --output_dir $VQA_EXP --checkpoint 6000 --pin_mem --fp16
    
    The result file will be written at $VQA_EXP/results_test/results_6000_all.json, which can be submitted to the evaluation server

VCR

NOTE: train and inference should be ran inside the docker container

  1. download data
    bash scripts/download_vcr.sh $PATH_TO_STORAGE
    
  2. train
    horovodrun -np 4 python train_vcr.py --config config/train-vcr-base-4gpu.json \
        --output_dir $VCR_EXP
    
  3. inference
    horovodrun -np 4 python inf_vcr.py --txt_db /txt/vcr_test.db \
        --img_db "/img/vcr_gt_test/;/img/vcr_test/" \
        --split test --output_dir $VCR_EXP --checkpoint 8000 \
        --pin_mem --fp16
    
    The result file will be written at $VCR_EXP/results_test/results_8000_all.csv, which can be submitted to VCR leaderboard for evluation.

VCR 2nd Stage Pre-training

NOTE: pretrain should be ran inside the docker container

  1. download VCR data if you haven't
    bash scripts/download_vcr.sh $PATH_TO_STORAGE
    
  2. 2nd stage pre-train
    horovodrun -np 4 python pretrain_vcr.py --config config/pretrain-vcr-base-4gpu.json \
        --output_dir $PRETRAIN_VCR_EXP
    

Visual Entailment (SNLI-VE)

NOTE: train should be ran inside the docker container

  1. download data
    bash scripts/download_ve.sh $PATH_TO_STORAGE
    
  2. train
    horovodrun -np 2 python train_ve.py --config config/train-ve-base-2gpu.json \
        --output_dir $VE_EXP
    

Image-Text Retrieval

download data

bash scripts/download_itm.sh $PATH_TO_STORAGE

NOTE: Image-Text Retrieval is computationally heavy, especially on COCO.

Zero-shot Image-Text Retrieval (Flickr30k)

# every image-text pair has to be ranked; please use as many GPUs as possible
horovodrun -np $NGPU python inf_itm.py \
    --txt_db /txt/itm_flickr30k_test.db --img_db /img/flickr30k \
    --checkpoint /pretrain/uniter-base.pt --model_config /src/config/uniter-base.json \
    --output_dir $ZS_ITM_RESULT --fp16 --pin_mem

Image-Text Retrieval (Flickr30k)

  • normal finetune
    horovodrun -np 8 python train_itm.py --config config/train-itm-flickr-base-8gpu.json
    
  • finetune with hard negatives
    horovodrun -np 16 python train_itm_hard_negatives.py \
        --config config/train-itm-flickr-base-16gpu-hn.jgon
    

Image-Text Retrieval (COCO)

  • finetune with hard negatives
    horovodrun -np 16 python train_itm_hard_negatives.py \
        --config config/train-itm-coco-base-16gpu-hn.json
    

Referring Expressions

  1. download data
    bash scripts/download_re.sh $PATH_TO_STORAGE
    
  2. train
    python train_re.py --config config/train-refcoco-base-1gpu.json \
        --output_dir $RE_EXP
    
  3. inference and evaluation
    source scripts/eval_refcoco.sh $RE_EXP
    
    The result files will be written under $RE_EXP/results_test/

Similarly, change corresponding configs/scripts for running RefCOCO+/RefCOCOg.

Pre-tranining

download

bash scripts/download_indomain.sh $PATH_TO_STORAGE

pre-train

horovodrun -np 8 python pretrain.py --config config/pretrain-indomain-base-8gpu.json \
    --output_dir $PRETRAIN_EXP

Unfortunately, we cannot host CC/SBU features due to their large size. Users will need to process them on their own. We will provide a smaller sample for easier reference to the expected format soon.

Citation

If you find this code useful for your research, please consider citing:

@inproceedings{chen2020uniter,
  title={Uniter: Universal image-text representation learning},
  author={Chen, Yen-Chun and Li, Linjie and Yu, Licheng and Kholy, Ahmed El and Ahmed, Faisal and Gan, Zhe and Cheng, Yu and Liu, Jingjing},
  booktitle={ECCV},
  year={2020}
}

License

MIT

Owner
Yen-Chun Chen
Researcher @ Microsoft Cloud+AI. previously Machine Learning Scientist @ Stackline; M.S. student @ UNC Chapel Hill NLP group
Yen-Chun Chen
Mycroft Core, the Mycroft Artificial Intelligence platform.

Mycroft Mycroft is a hackable open source voice assistant. Table of Contents Getting Started Running Mycroft Using Mycroft Home Device and Account Man

Mycroft 6.1k Jan 09, 2023
Sinkhorn Transformer - Practical implementation of Sparse Sinkhorn Attention

Sinkhorn Transformer This is a reproduction of the work outlined in Sparse Sinkhorn Attention, with additional enhancements. It includes a parameteriz

Phil Wang 217 Nov 25, 2022
This is the offline-training-pipeline for our project.

offline-training-pipeline This is the offline-training-pipeline for our project. We adopt the offline training and online prediction Machine Learning

0 Apr 22, 2022
This is a general repo that helps you develop fast/effective NLP classifiers using Huggingface

NLP Classifier Introduction This project trains a bert model on any NLP classifcation model. And uses the model in make predictions on new data using

Abdullah Tarek 3 Mar 11, 2022
To classify the News into Real/Fake using Features from the Text Content of the article

Hoax-Detector Authenticity of news has now become a major problem. The Idea is to classify the News into Real/Fake using Features from the Text Conten

Aravindhan 1 Feb 09, 2022
ConvBERT-Prod

ConvBERT 目录 0. 仓库结构 1. 简介 2. 数据集和复现精度 3. 准备数据与环境 3.1 准备环境 3.2 准备数据 3.3 准备模型 4. 开始使用 4.1 模型训练 4.2 模型评估 4.3 模型预测 5. 模型推理部署 5.1 基于Inference的推理 5.2 基于Serv

yujun 7 Apr 08, 2022
News-Articles-and-Essays - NLP (Topic Modeling and Clustering)

NLP T5 Project proposal Topic Modeling and Clustering of News-Articles-and-Essays Students: Nasser Alshehri Abdullah Bushnag Abdulrhman Alqurashi OVER

2 Jan 18, 2022
PortaSpeech - PyTorch Implementation

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 276 Dec 26, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Phil Wang 5k Jan 02, 2023
PRAnCER is a web platform that enables the rapid annotation of medical terms within clinical notes.

PRAnCER (Platform enabling Rapid Annotation for Clinical Entity Recognition) is a web platform that enables the rapid annotation of medical terms within clinical notes. A user can highlight spans of

Sontag Lab 39 Nov 14, 2022
Pretrained Japanese BERT models

Pretrained Japanese BERT models This is a repository of pretrained Japanese BERT models. The models are available in Transformers by Hugging Face. Mod

Inui Laboratory 387 Dec 30, 2022
CMeEE 数据集医学实体抽取

医学实体抽取_GlobalPointer_torch 介绍 思想来自于苏神 GlobalPointer,原始版本是基于keras实现的,模型结构实现参考现有 pytorch 复现代码【感谢!】,基于torch百分百复现苏神原始效果。 数据集 中文医学命名实体数据集 点这里申请,很简单,共包含九类医学

85 Dec 28, 2022
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
Chinese Named Entity Recognization (BiLSTM with PyTorch)

BiLSTM-CRF for Name Entity Recognition PyTorch version A PyTorch implemention of Bi-LSTM-CRF model for Chinese Named Entity Recognition. 使用 PyTorch 实现

5 Jun 01, 2022
SHAS: Approaching optimal Segmentation for End-to-End Speech Translation

SHAS: Approaching optimal Segmentation for End-to-End Speech Translation In this repo you can find the code of the Supervised Hybrid Audio Segmentatio

Machine Translation @ UPC 21 Dec 20, 2022
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.

Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BER

Jay Alammar 1.6k Dec 25, 2022
A minimal code for fairseq vq-wav2vec model inference.

vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex

Vladimir Larin 7 Nov 15, 2022
Phomber is infomation grathering tool that reverse search phone numbers and get their details, written in python3.

A Infomation Grathering tool that reverse search phone numbers and get their details ! What is phomber? Phomber is one of the best tools available fo

S41R4J 121 Dec 27, 2022
chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

abhishek thakur 33 Dec 18, 2022