This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

Overview

BMW Semantic Segmentation GPU/CPU Inference API

This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit.

The training GUI (also based on the Gluoncv CV toolkit ) for the Semantic Segmentation workflow will be published soon.

A sample inference model is provided with this repository for testing purposes.

This repository can be deployed using docker.

Note: To be able to use the sample inference model provided with this repository make sure to use git clone and avoid downloading the repository as ZIP because it will not download the actual model stored on git lfs but just the pointer instead

api

Prerequisites

  • Ubuntu 18.04 or 20.04 LTS
  • Windows 10 pro with hyper-v enabled and docker desktop
  • NVIDIA Drivers (410.x or higher)
  • Docker CE latest stable release
  • NVIDIA Docker 2
  • Git lfs (large file storage) : installation

Note: the windows deployment supports only CPU version thus nvidia driver and nvidia docker are not required

Check for prerequisites

To check if you have docker-ce installed:

docker --version

To check if you have nvidia-docker2 installed:

dpkg -l | grep nvidia-docker2

nvidia-docker2

To check your nvidia drivers version, open your terminal and type the command nvidia-smi

nvidia-smi

Install prerequisites

Use the following command to install docker on Ubuntu:

chmod +x install_prerequisites.sh && source install_prerequisites.sh

Install NVIDIA Drivers (410.x or higher) and NVIDIA Docker for GPU by following the official docs

Build The Docker Image

To build the docker environment, run the following command in the project's directory:

  • For GPU Build:
docker build -t gluoncv_segmentation_inference_api_gpu -f ./GPU/dockerfile .
  • For CPU Build:
docker build -t gluoncv_segmentation_inference_api_cpu -f ./CPU/dockerfile .

Behind a proxy

  • For GPU Build:
docker build --build-arg http_proxy='' --build-arg https_proxy='' -t gluoncv_segmentation_inference_api_gpu -f ./GPU/dockerfile .
  • For CPU Build:
docker build --build-arg http_proxy='' --build-arg https_proxy='' -t gluoncv_segmentation_inference_api_cpu -f ./CPU/dockerfile .

Run the docker container

To run the inference API go the to the API's directory and run the following:

Using Linux based docker:

  • For GPU:
docker run --gpus '"device=<- gpu numbers seperated by commas ex:"0,1,2" ->"' -itv $(pwd)/models:/models -p <port-of-your-choice>:4343 gluoncv_segmentation_inference_api_gpu
  • For CPU:
docker run -itv $(pwd)/models:/models -p <port-of-your-choice>:4343 gluoncv_segmentation_inference_api_cpu
  • For Windows
docker run -itv ${PWD}/models:/models -p <port-of-your-choice>:4343 gluoncv_segmentation_inference_api_cpu

API Endpoints

To see all available endpoints, open your favorite browser and navigate to:

http://<machine_URL>:<Docker_host_port>/docs

The 'predict_batch' endpoint is not shown on swagger. The list of files input is not yet supported.

Endpoints summary

/load (GET)

Loads all available models and returns every model with it's hashed value. Loaded models are stored and aren't loaded again

/detect (POST)

Performs inference on specified model, image, and returns json file

/get_labels (POST)

Returns all of the specified model labels with their hashed values

/models (GET)

Lists all available models

/models/{model_name}/load (GET)

Loads the specified model. Loaded models are stored and aren't loaded again

/models/{model_name}/predict (POST)

Performs inference on specified model, image, and returns json file (exactly like detect)

/models/{model_name}/predict_image (POST)

Performs inference on specified model, image, and returns the image with transparent segments on it.

/models/{model_name}/inference (POST)

Performs inference on specified model,image, and returns the segments only (image)

inference

/models/{model_name}/labels (GET)

Returns all of the specified model labels

/models/{model_name}/config (GET)

Returns the specified model's configuration

Model structure

The folder "models" contains sub-folders of all the models to be loaded.

You can copy your model sub-folder generated after training ( training GUI will be published soon ) , put it inside the "models" folder in your inference repos and you're all set to infer.

The model sub-folder should contain the following :

  • model_best.params

  • palette.txt If you don't have your own palette, you can generate a random one using the command below in your project's repository and copy palette.txt to your model directory:

python3 generate_random_palette.py
  • configuration.json

The configuration.json file should look like the following :

{
    "inference_engine_name" : "gluonsegmentation",
    "backbone": "resnet101",
    "batch-size": 4,
    "checkname": "bmwtest",
    "classes": 3,
    "classesname": [
        "background",
        "pad",
        "circle"
    ],
    "network": "fcn",
    "type":"segmentation",
    "epochs": 10,
    "lr": 0.001,
    "momentum": 0.9,
    "num_workers": 4,
    "weight-decay": 0.0001
}

Acknowledgements

  • Roy Anwar,Beirut, Lebanon
  • Hadi Koubeissy, inmind.ai, Beirut, Lebanon
Owner
BMW TechOffice MUNICH
This organization contains software for realtime computer vision published by the members, partners and friends of the BMW TechOffice MUNICH and InnovationLab.
BMW TechOffice MUNICH
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
Open CV - Convert a picture to look like a cartoon sketch in python

Use the video https://www.youtube.com/watch?v=k7cVPGpnels for initial learning.

Sammith S Bharadwaj 3 Jan 29, 2022
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds PCAM: Product of Cross-Attention Matrices for Rigid Registration of P

valeo.ai 24 May 31, 2022
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
Dados coletados e programas desenvolvidos no processo de iniciação científica

Iniciacao_cientifica_FAPESP_2020-14845-6 Dados coletados e programas desenvolvidos no processo de iniciação científica Os arquivos .py são os programa

1 Jan 10, 2022
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
【ACMMM 2021】DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning (ACMMM 2021) Overview We release the code of the DSANet (Dynamic S

Wenhao Wu 46 Dec 27, 2022
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022