This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

Overview

BMW Semantic Segmentation GPU/CPU Inference API

This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit.

The training GUI (also based on the Gluoncv CV toolkit ) for the Semantic Segmentation workflow will be published soon.

A sample inference model is provided with this repository for testing purposes.

This repository can be deployed using docker.

Note: To be able to use the sample inference model provided with this repository make sure to use git clone and avoid downloading the repository as ZIP because it will not download the actual model stored on git lfs but just the pointer instead

api

Prerequisites

  • Ubuntu 18.04 or 20.04 LTS
  • Windows 10 pro with hyper-v enabled and docker desktop
  • NVIDIA Drivers (410.x or higher)
  • Docker CE latest stable release
  • NVIDIA Docker 2
  • Git lfs (large file storage) : installation

Note: the windows deployment supports only CPU version thus nvidia driver and nvidia docker are not required

Check for prerequisites

To check if you have docker-ce installed:

docker --version

To check if you have nvidia-docker2 installed:

dpkg -l | grep nvidia-docker2

nvidia-docker2

To check your nvidia drivers version, open your terminal and type the command nvidia-smi

nvidia-smi

Install prerequisites

Use the following command to install docker on Ubuntu:

chmod +x install_prerequisites.sh && source install_prerequisites.sh

Install NVIDIA Drivers (410.x or higher) and NVIDIA Docker for GPU by following the official docs

Build The Docker Image

To build the docker environment, run the following command in the project's directory:

  • For GPU Build:
docker build -t gluoncv_segmentation_inference_api_gpu -f ./GPU/dockerfile .
  • For CPU Build:
docker build -t gluoncv_segmentation_inference_api_cpu -f ./CPU/dockerfile .

Behind a proxy

  • For GPU Build:
docker build --build-arg http_proxy='' --build-arg https_proxy='' -t gluoncv_segmentation_inference_api_gpu -f ./GPU/dockerfile .
  • For CPU Build:
docker build --build-arg http_proxy='' --build-arg https_proxy='' -t gluoncv_segmentation_inference_api_cpu -f ./CPU/dockerfile .

Run the docker container

To run the inference API go the to the API's directory and run the following:

Using Linux based docker:

  • For GPU:
docker run --gpus '"device=<- gpu numbers seperated by commas ex:"0,1,2" ->"' -itv $(pwd)/models:/models -p <port-of-your-choice>:4343 gluoncv_segmentation_inference_api_gpu
  • For CPU:
docker run -itv $(pwd)/models:/models -p <port-of-your-choice>:4343 gluoncv_segmentation_inference_api_cpu
  • For Windows
docker run -itv ${PWD}/models:/models -p <port-of-your-choice>:4343 gluoncv_segmentation_inference_api_cpu

API Endpoints

To see all available endpoints, open your favorite browser and navigate to:

http://<machine_URL>:<Docker_host_port>/docs

The 'predict_batch' endpoint is not shown on swagger. The list of files input is not yet supported.

Endpoints summary

/load (GET)

Loads all available models and returns every model with it's hashed value. Loaded models are stored and aren't loaded again

/detect (POST)

Performs inference on specified model, image, and returns json file

/get_labels (POST)

Returns all of the specified model labels with their hashed values

/models (GET)

Lists all available models

/models/{model_name}/load (GET)

Loads the specified model. Loaded models are stored and aren't loaded again

/models/{model_name}/predict (POST)

Performs inference on specified model, image, and returns json file (exactly like detect)

/models/{model_name}/predict_image (POST)

Performs inference on specified model, image, and returns the image with transparent segments on it.

/models/{model_name}/inference (POST)

Performs inference on specified model,image, and returns the segments only (image)

inference

/models/{model_name}/labels (GET)

Returns all of the specified model labels

/models/{model_name}/config (GET)

Returns the specified model's configuration

Model structure

The folder "models" contains sub-folders of all the models to be loaded.

You can copy your model sub-folder generated after training ( training GUI will be published soon ) , put it inside the "models" folder in your inference repos and you're all set to infer.

The model sub-folder should contain the following :

  • model_best.params

  • palette.txt If you don't have your own palette, you can generate a random one using the command below in your project's repository and copy palette.txt to your model directory:

python3 generate_random_palette.py
  • configuration.json

The configuration.json file should look like the following :

{
    "inference_engine_name" : "gluonsegmentation",
    "backbone": "resnet101",
    "batch-size": 4,
    "checkname": "bmwtest",
    "classes": 3,
    "classesname": [
        "background",
        "pad",
        "circle"
    ],
    "network": "fcn",
    "type":"segmentation",
    "epochs": 10,
    "lr": 0.001,
    "momentum": 0.9,
    "num_workers": 4,
    "weight-decay": 0.0001
}

Acknowledgements

  • Roy Anwar,Beirut, Lebanon
  • Hadi Koubeissy, inmind.ai, Beirut, Lebanon
Owner
BMW TechOffice MUNICH
This organization contains software for realtime computer vision published by the members, partners and friends of the BMW TechOffice MUNICH and InnovationLab.
BMW TechOffice MUNICH
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

MohammadReza Norouzi 5 Mar 06, 2022
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion

Yandex Research 355 Jan 06, 2023
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Snap Research 160 Dec 09, 2022
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st

Aaron Chen 2.4k Dec 28, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Model of an AI powered sign language interpreter.

TEXT AND SPEECH TO SIGN LANGUAGE. A web application which takes in text or live audio speech recording as input, converts and displays the relevant Si

Mark Gatere 4 Mar 30, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022