This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

Overview

BMW Semantic Segmentation GPU/CPU Inference API

This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit.

The training GUI (also based on the Gluoncv CV toolkit ) for the Semantic Segmentation workflow will be published soon.

A sample inference model is provided with this repository for testing purposes.

This repository can be deployed using docker.

Note: To be able to use the sample inference model provided with this repository make sure to use git clone and avoid downloading the repository as ZIP because it will not download the actual model stored on git lfs but just the pointer instead

api

Prerequisites

  • Ubuntu 18.04 or 20.04 LTS
  • Windows 10 pro with hyper-v enabled and docker desktop
  • NVIDIA Drivers (410.x or higher)
  • Docker CE latest stable release
  • NVIDIA Docker 2
  • Git lfs (large file storage) : installation

Note: the windows deployment supports only CPU version thus nvidia driver and nvidia docker are not required

Check for prerequisites

To check if you have docker-ce installed:

docker --version

To check if you have nvidia-docker2 installed:

dpkg -l | grep nvidia-docker2

nvidia-docker2

To check your nvidia drivers version, open your terminal and type the command nvidia-smi

nvidia-smi

Install prerequisites

Use the following command to install docker on Ubuntu:

chmod +x install_prerequisites.sh && source install_prerequisites.sh

Install NVIDIA Drivers (410.x or higher) and NVIDIA Docker for GPU by following the official docs

Build The Docker Image

To build the docker environment, run the following command in the project's directory:

  • For GPU Build:
docker build -t gluoncv_segmentation_inference_api_gpu -f ./GPU/dockerfile .
  • For CPU Build:
docker build -t gluoncv_segmentation_inference_api_cpu -f ./CPU/dockerfile .

Behind a proxy

  • For GPU Build:
docker build --build-arg http_proxy='' --build-arg https_proxy='' -t gluoncv_segmentation_inference_api_gpu -f ./GPU/dockerfile .
  • For CPU Build:
docker build --build-arg http_proxy='' --build-arg https_proxy='' -t gluoncv_segmentation_inference_api_cpu -f ./CPU/dockerfile .

Run the docker container

To run the inference API go the to the API's directory and run the following:

Using Linux based docker:

  • For GPU:
docker run --gpus '"device=<- gpu numbers seperated by commas ex:"0,1,2" ->"' -itv $(pwd)/models:/models -p <port-of-your-choice>:4343 gluoncv_segmentation_inference_api_gpu
  • For CPU:
docker run -itv $(pwd)/models:/models -p <port-of-your-choice>:4343 gluoncv_segmentation_inference_api_cpu
  • For Windows
docker run -itv ${PWD}/models:/models -p <port-of-your-choice>:4343 gluoncv_segmentation_inference_api_cpu

API Endpoints

To see all available endpoints, open your favorite browser and navigate to:

http://<machine_URL>:<Docker_host_port>/docs

The 'predict_batch' endpoint is not shown on swagger. The list of files input is not yet supported.

Endpoints summary

/load (GET)

Loads all available models and returns every model with it's hashed value. Loaded models are stored and aren't loaded again

/detect (POST)

Performs inference on specified model, image, and returns json file

/get_labels (POST)

Returns all of the specified model labels with their hashed values

/models (GET)

Lists all available models

/models/{model_name}/load (GET)

Loads the specified model. Loaded models are stored and aren't loaded again

/models/{model_name}/predict (POST)

Performs inference on specified model, image, and returns json file (exactly like detect)

/models/{model_name}/predict_image (POST)

Performs inference on specified model, image, and returns the image with transparent segments on it.

/models/{model_name}/inference (POST)

Performs inference on specified model,image, and returns the segments only (image)

inference

/models/{model_name}/labels (GET)

Returns all of the specified model labels

/models/{model_name}/config (GET)

Returns the specified model's configuration

Model structure

The folder "models" contains sub-folders of all the models to be loaded.

You can copy your model sub-folder generated after training ( training GUI will be published soon ) , put it inside the "models" folder in your inference repos and you're all set to infer.

The model sub-folder should contain the following :

  • model_best.params

  • palette.txt If you don't have your own palette, you can generate a random one using the command below in your project's repository and copy palette.txt to your model directory:

python3 generate_random_palette.py
  • configuration.json

The configuration.json file should look like the following :

{
    "inference_engine_name" : "gluonsegmentation",
    "backbone": "resnet101",
    "batch-size": 4,
    "checkname": "bmwtest",
    "classes": 3,
    "classesname": [
        "background",
        "pad",
        "circle"
    ],
    "network": "fcn",
    "type":"segmentation",
    "epochs": 10,
    "lr": 0.001,
    "momentum": 0.9,
    "num_workers": 4,
    "weight-decay": 0.0001
}

Acknowledgements

  • Roy Anwar,Beirut, Lebanon
  • Hadi Koubeissy, inmind.ai, Beirut, Lebanon
Owner
BMW TechOffice MUNICH
This organization contains software for realtime computer vision published by the members, partners and friends of the BMW TechOffice MUNICH and InnovationLab.
BMW TechOffice MUNICH
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Ă–zdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:

MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents

MLJAR 2.4k Dec 31, 2022
Low-dose Digital Mammography with Deep Learning

Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains

WANG-AXIS 6 Dec 13, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
Facial detection, landmark tracking and expression transfer library for Windows, Linux and Mac

Welcome to the CSIRO Face Analysis SDK. Documentation for the SDK can be found in doc/documentation.html. All code in this SDK is provided according t

Luiz Carlos Vieira 7 Jul 16, 2020
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-

tensordiffeq 74 Dec 09, 2022
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular Depth Estimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised d

Hang 94 Dec 25, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021