A small timeseries transformation API built on Flask and Pandas

Overview

#Mcflyin

###A timeseries transformation API built on Pandas and Flask

This is a small demo of an API to do timeseries transformations built on Flask and Pandas.

Concept

The idea is that you can make a POST request to the API with a simple list/array of timestamps, from any language, and get back some interesting transformations of that data.

Why?

Partly to show how straightforward it is to build such a thing. Python is great because it has very powerful, intuitive, quick-to-learn tools for both building web applications and doing data analysis/statistics.

That puts Python in kind of a unique position: powerful web tools, powerful scientific/numerical/statistical data tools. This API is a very simple example of how you can take advantage of both. Go read the source code- it's short and easy to grok. Bug fixes and pull requests welcome.

Getting Started

First we need to find some data. We're going to use some data that Wes McKinney provided in a recent blog post, with some statistics on Python posts on Stack Overflow. This is something of a contrived example: I'm manipulating the data in Python, sending to a Python backend, and then getting a response to manipulate in Python. Just know that all you need is an array of timestamp strings, no matter your language.

import pandas as pd

data = pd.read_csv('AllPandas.csv')
data = data['CreationDate'].tolist()

A simple array of timestamps:

>>>data[:10]
['2011-04-01 14:50:44',
 '2012-01-18 19:41:27',
 '2012-01-23 03:21:00',
 '2012-01-24 17:59:53',
 '2012-03-04 16:58:45',
 '2012-03-09 22:36:52',
 '2012-03-10 15:35:26',
 '2012-03-18 12:53:06',
 '2012-03-30 13:58:29',
 '2012-04-04 23:17:23']

With the McFlyin application running on localhost, lets make a request to resample the data on an daily basis, to get the number of posts per day:

import requests
import json

freq = {'D': 'Daily'}
sends = {'freq': json.dumps(freq), 'data': json.dumps(data)}
r = requests.post('http://127.0.0.1:5000/resample', data=sends)
response = r.json

The response is simple JSON:

{'Monthly': {'data': [1.0, 2.0, 1.0, 1.0,...
             'time': ['2011-03-31T00:00:00', '2011-04-30T00:00:00', '2011-05-31T00:00:00', '2011-06-30T00:00:00', '2011-07-31T00:00:00',...

Here's the distribution of daily questions on Stack Overflow for Pandas (monthly probably would have been a little more informative):

Daily

Let's call Mcflyin for a rolling sum on a seven-day window. It will resample to the given freq, then apply the window to the result:

freq = {'D': 'Weekly Rolling'}
sends = {'freq': json.dumps(freq), 'data': json.dumps(data), 'window': 7}
r = requests.post('http://127.0.0.1:5000/rolling_sum', data=sends)
response = r.json

Rolling

Let's look at the total questions asked by day:

sends = {'data': json.dumps(data), 'how': json.dumps('sum')}
r = requests.post('http://127.0.0.1:5000/daily', data=sends)
response = r.json

dailysum

and daily means:

sends = {'data': json.dumps(data), 'how': json.dumps('mean')}
r = requests.post('http://127.0.0.1:5000/daily', data=sends)
response = r.json

dailymean

The same for hourly:

sends = {'data': json.dumps(data), 'how': json.dumps('sum')}
r = requests.post('http://127.0.0.1:5000/hourly', data=sends)
response = r.json

dailymean

Finally, we can look at hourly by day-of-week:

sends = {'data': json.dumps(data), 'how': json.dumps('sum')}
r = requests.post('http://127.0.0.1:5000/daily_hours', data=sends)
response = r.json

hourdow

Live demo here

Dependencies

Pandas, Numpy, Requests, Flask

How did you make those colorful graphs?

Vincent and Bearcart

Status

Lots of stuff that could be better- error handling on the requests, probably better handling of weird timestamps, etc. This is just a small demo of how powerful Python can be for building a statistics backend with relatively few lines of code.

If I want to write a front-end in a different language, can I put it in the examples folder?

Yes! PR's welcome.

Owner
Rob Story
Rob Story
Because trello only have payed options to generate a RunUp chart, this solves that!

Trello Runup Chart Generator The basic concept of the project is that Corello is pay-to-use and want to use Trello To-Do/Doing/Done automation with gi

Rômulo Schiavon 1 Dec 21, 2021
Here are my graphs for hw_02

Let's Have A Look At Some Graphs! Graph 1: State Mentions in Congressperson's Tweets on 10/01/2017 The graph below uses this data set to demonstrate h

7 Sep 02, 2022
Practical-statistics-for-data-scientists - Code repository for O'Reilly book

Code repository Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python by Peter Bruce, Andrew Bruce, and Peter Gedeck Pub

1.7k Jan 04, 2023
:art: Diagram as Code for prototyping cloud system architectures

Diagrams Diagram as Code. Diagrams lets you draw the cloud system architecture in Python code. It was born for prototyping a new system architecture d

MinJae Kwon 27.5k Dec 30, 2022
Some examples with MatPlotLib library in Python

MatPlotLib Example Some examples with MatPlotLib library in Python Point: Run files only in project's directory About me Full name: Matin Ardestani Ag

Matin Ardestani 4 Mar 29, 2022
Schema validation just got Pythonic

Schema validation just got Pythonic schema is a library for validating Python data structures, such as those obtained from config-files, forms, extern

Vladimir Keleshev 2.7k Jan 06, 2023
Standardized plots and visualizations in Python

Standardized plots and visualizations in Python pltviz is a Python package for standardized visualization. Routine and novel plotting approaches are f

Andrew Tavis McAllister 0 Jul 09, 2022
基于python爬虫爬取COVID-19爆发开始至今全球疫情数据并利用Echarts对数据进行分析与多样化展示。

COVID-19-Epidemic-Map 基于python爬虫爬取COVID-19爆发开始至今全球疫情数据并利用Echarts对数据进行分析与多样化展示。 觉得项目还不错的话欢迎给一个star! 项目的源码可以正常运行,各个库的版本、数据库的建表语句、运行过程中遇到的坑以及解决方式在笔记.md中都

31 Dec 15, 2022
Learn Data Science with focus on adding value with the most efficient tech stack.

DataScienceWithPython Get started with Data Science with Python An engaging journey to become a Data Scientist with Python TL;DR Download all Jupyter

Learn Python with Rune 110 Dec 22, 2022
mysql relation charts

sqlcharts 自动生成数据库关联关系图 复制settings.py.example 重命名为settings.py 将数据库配置信息填入settings.DATABASE,目前支持mysql和postgresql 执行 python build.py -b,-b是读取数据库表结构,如果只更新匹

6 Aug 22, 2022
Attractors is a package for simulation and visualization of strange attractors.

attractors Attractors is a package for simulation and visualization of strange attractors. Installation The simplest way to install the module is via

Vignesh M 45 Jul 31, 2022
Simulation du problème de Monty Hall avec Python et matplotlib

Le problème de Monty Hall C'est un jeu télévisé où il y a trois portes sur le plateau de jeu. Seule une de ces portes cache un trésor. Il n'y a rien d

ETCHART YANG 1 Jan 06, 2022
Generate the report for OCULTest.

Sample report generated in this function Usage example from utils.gen_report import generate_report if __name__ == '__main__': # def generate_rep

Philip Guo 1 Mar 10, 2022
CLAHE Contrast Limited Adaptive Histogram Equalization

A simple code to process images using contrast limited adaptive histogram equalization. Image processing is becoming a major part of data processig.

Happy N. Monday 4 May 18, 2022
ipyvizzu - Jupyter notebook integration of Vizzu

ipyvizzu - Jupyter notebook integration of Vizzu. Tutorial · Examples · Repository About The Project ipyvizzu is the Jupyter Notebook integration of V

Vizzu 729 Jan 08, 2023
A python package for animating plots build on matplotlib.

animatplot A python package for making interactive as well as animated plots with matplotlib. Requires Python = 3.5 Matplotlib = 2.2 (because slider

Tyler Makaro 394 Dec 18, 2022
HW 02 for CS40 - matplotlib practice

HW 02 for CS40 - matplotlib practice project instructions https://github.com/mikeizbicki/cmc-csci040/tree/2021fall/hw_02 Drake Lyric Analysis Bar Char

13 Oct 27, 2021
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
GitHub English Top Charts

Help you discover excellent English projects and get rid of the interference of other spoken language.

kon9chunkit 529 Jan 02, 2023
Data Visualizer for Super Mario Kart (SNES)

Data Visualizer for Super Mario Kart (SNES)

MrL314 21 Nov 20, 2022