An open source robotics benchmark for meta- and multi-task reinforcement learning

Overview

Meta-World

License Build Status

Meta-World is an open-source simulated benchmark for meta-reinforcement learning and multi-task learning consisting of 50 distinct robotic manipulation tasks. We aim to provide task distributions that are sufficiently broad to evaluate meta-RL algorithms' generalization ability to new behaviors.

For more background information, please refer to our website and the accompanying conference publication, which provides baseline results for 8 state-of-the-art meta- and multi-task RL algorithms.

Table of Contents

Join the Community

Join our mailing list: [email protected] for infrequent announcements about the status of the benchmark, critical bugs and known issues before conference deadlines, and future plans, please

Need some help? Have a question which is not quite a bug and not quite a feature request?

Join the community Slack by filling out this Google Form.

Installation

Meta-World is based on MuJoCo, which has a proprietary dependency we can't set up for you. Please follow the instructions in the mujoco-py package for help. Once you're ready to install everything, run:

pip install git+https://github.com/rlworkgroup/[email protected]#egg=metaworld

Alternatively, you can clone the repository and install an editable version locally:

git clone https://github.com/rlworkgroup/metaworld.git
cd metaworld
pip install -e .

Using the benchmark

Here is a list of benchmark environments for meta-RL (ML*) and multi-task-RL (MT*):

  • ML1 is a meta-RL benchmark environment which tests few-shot adaptation to goal variation within single task. You can choose to test variation within any of 50 tasks for this benchmark.
  • ML10 is a meta-RL benchmark which tests few-shot adaptation to new tasks. It comprises 10 meta-train tasks, and 3 test tasks.
  • ML45 is a meta-RL benchmark which tests few-shot adaptation to new tasks. It comprises 45 meta-train tasks and 5 test tasks.
  • MT10, MT1, and MT50 are multi-task-RL benchmark environments for learning a multi-task policy that perform 10, 1, and 50 training tasks respectively. MT1 is similar to ML1 becau you can choose to test variation within any of 50 tasks for this benchmark. In the original Metaworld experiments, we augment MT10 and MT50 environment observations with a one-hot vector which identifies the task. We don't enforce how users utilize task one-hot vectors, however one solution would be to use a Gym wrapper such as this one

Basics

We provide a Benchmark API, that allows constructing environments following the gym.Env interface.

To use a Benchmark, first construct it (this samples the tasks allowed for one run of an algorithm on the benchmark). Then, construct at least one instance of each environment listed in benchmark.train_classes and benchmark.test_classes. For each of those environments, a task must be assigned to it using env.set_task(task) from benchmark.train_tasks and benchmark.test_tasks, respectively. Tasks can only be assigned to environments which have a key in benchmark.train_classes or benchmark.test_classes matching task.env_name.

Please see below for some small examples using this API.

Running ML1 or MT1

import metaworld
import random

print(metaworld.ML1.ENV_NAMES)  # Check out the available environments

ml1 = metaworld.ML1('pick-place-v1') # Construct the benchmark, sampling tasks

env = ml1.train_classes['pick-place-v1']()  # Create an environment with task `pick_place`
task = random.choice(ml1.train_tasks)
env.set_task(task)  # Set task

obs = env.reset()  # Reset environment
a = env.action_space.sample()  # Sample an action
obs, reward, done, info = env.step(a)  # Step the environoment with the sampled random action

MT1 can be run the same way except that it does not contain any test_tasks

Running a benchmark

Create an environment with train tasks (ML10, MT10, ML45, or MT50):

import metaworld
import random

ml10 = metaworld.ML10() # Construct the benchmark, sampling tasks

training_envs = []
for name, env_cls in ml10.train_classes.items():
  env = env_cls()
  task = random.choice([task for task in ml10.train_tasks
                        if task.env_name == name])
  env.set_task(task)
  training_envs.append(env)

for env in training_envs:
  obs = env.reset()  # Reset environment
  a = env.action_space.sample()  # Sample an action
  obs, reward, done, info = env.step(a)  # Step the environoment with the sampled random action

Create an environment with test tasks (this only works for ML10 and ML45, since MT10 and MT50 don't have a separate set of test tasks):

import metaworld
import random

ml10 = metaworld.ML10() # Construct the benchmark, sampling tasks

testing_envs = []
for name, env_cls in ml10.test_classes.items():
  env = env_cls()
  task = random.choice([task for task in ml10.test_tasks
                        if task.env_name == name])
  env.set_task(task)
  testing_envs.append(env)

for env in testing_envs:
  obs = env.reset()  # Reset environment
  a = env.action_space.sample()  # Sample an action
  obs, reward, done, info = env.step(a)  # Step the environoment with the sampled random action

Citing Meta-World

If you use Meta-World for academic research, please kindly cite our CoRL 2019 paper the using following BibTeX entry.

@inproceedings{yu2019meta,
  title={Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning},
  author={Tianhe Yu and Deirdre Quillen and Zhanpeng He and Ryan Julian and Karol Hausman and Chelsea Finn and Sergey Levine},
  booktitle={Conference on Robot Learning (CoRL)},
  year={2019}
  eprint={1910.10897},
  archivePrefix={arXiv},
  primaryClass={cs.LG}
  url={https://arxiv.org/abs/1910.10897}
}

Accompanying Baselines

If you're looking for implementations of the baselines algorithms used in the Metaworld conference publication, please look at our sister directory, Garage. Note that these aren't the exact same baselines that were used in the original conference publication, however they are true to the original baselines.

Become a Contributor

We welcome all contributions to Meta-World. Please refer to the contributor's guide for how to prepare your contributions.

Acknowledgements

Meta-World is a work by Tianhe Yu (Stanford University), Deirdre Quillen (UC Berkeley), Zhanpeng He (Columbia University), Ryan Julian (University of Southern California), Karol Hausman (Google AI), Chelsea Finn (Stanford University) and Sergey Levine (UC Berkeley).

The code for Meta-World was originally based on multiworld, which is developed by Vitchyr H. Pong, Murtaza Dalal, Ashvin Nair, Shikhar Bahl, Steven Lin, Soroush Nasiriany, Kristian Hartikainen and Coline Devin. The Meta-World authors are grateful for their efforts on providing such a great framework as a foundation of our work. We also would like to thank Russell Mendonca for his work on reward functions for some of the environments.

Owner
Reinforcement Learning Working Group
Coalition of researchers which develop open source reinforcement learning research software
Reinforcement Learning Working Group
TF-Agents: A reliable, scalable and easy to use TensorFlow library for Contextual Bandits and Reinforcement Learning.

TF-Agents: A reliable, scalable and easy to use TensorFlow library for Contextual Bandits and Reinforcement Learning. TF-Agents makes implementing, de

2.4k Dec 29, 2022
A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

OpenAI 29.6k Jan 01, 2023
Dopamine is a research framework for fast prototyping of reinforcement learning algorithms.

Dopamine Dopamine is a research framework for fast prototyping of reinforcement learning algorithms. It aims to fill the need for a small, easily grok

Google 10k Jan 07, 2023
Reinforcement Learning Coach by Intel AI Lab enables easy experimentation with state of the art Reinforcement Learning algorithms

Coach Coach is a python reinforcement learning framework containing implementation of many state-of-the-art algorithms. It exposes a set of easy-to-us

Intel Labs 2.2k Jan 05, 2023
TensorFlow Reinforcement Learning

TRFL TRFL (pronounced "truffle") is a library built on top of TensorFlow that exposes several useful building blocks for implementing Reinforcement Le

DeepMind 3.1k Dec 29, 2022
OpenAI Baselines: high-quality implementations of reinforcement learning algorithms

Status: Maintenance (expect bug fixes and minor updates) Baselines OpenAI Baselines is a set of high-quality implementations of reinforcement learning

OpenAI 13.5k Jan 07, 2023
An open source robotics benchmark for meta- and multi-task reinforcement learning

Meta-World Meta-World is an open-source simulated benchmark for meta-reinforcement learning and multi-task learning consisting of 50 distinct robotic

Reinforcement Learning Working Group 823 Jan 06, 2023
Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!

Serpent.AI - Game Agent Framework (Python) Update: Revival (May 2020) Development work has resumed on the framework with the aim of bringing it into 2

Serpent.AI 6.4k Jan 05, 2023
A customisable 3D platform for agent-based AI research

DeepMind Lab is a 3D learning environment based on id Software's Quake III Arena via ioquake3 and other open source software. DeepMind Lab provides a

DeepMind 6.8k Jan 05, 2023
Paddle-RLBooks is a reinforcement learning code study guide based on pure PaddlePaddle.

Paddle-RLBooks Welcome to Paddle-RLBooks which is a reinforcement learning code study guide based on pure PaddlePaddle. 欢迎来到Paddle-RLBooks,该仓库主要是针对强化学

AgentMaker 117 Dec 12, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 5.4k Jan 04, 2023
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL ChainerRL is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using Ch

Chainer 1.1k Dec 26, 2022
Retro Games in Gym

Status: Maintenance (expect bug fixes and minor updates) Gym Retro Gym Retro lets you turn classic video games into Gym environments for reinforcement

OpenAI 2.8k Jan 03, 2023
Modular Deep Reinforcement Learning framework in PyTorch. Companion library of the book "Foundations of Deep Reinforcement Learning".

SLM Lab Modular Deep Reinforcement Learning framework in PyTorch. Documentation: https://slm-lab.gitbook.io/slm-lab/ BeamRider Breakout KungFuMaster M

Wah Loon Keng 1.1k Dec 24, 2022
Open world survival environment for reinforcement learning

Crafter Open world survival environment for reinforcement learning. Highlights Crafter is a procedurally generated 2D world, where the agent finds foo

Danijar Hafner 213 Jan 05, 2023
Monitor your el-cheapo UPS via SNMP

UPSC-SNMP-Agent UPSC-SNMP-Agent exposes your el-cheapo locally connected UPS via the SNMP network management protocol. This enables various equipment

Tom Szilagyi 32 Jul 28, 2022
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
A general-purpose multi-agent training framework.

MALib A general-purpose multi-agent training framework. Installation step1: build environment conda create -n malib python==3.7 -y conda activate mali

MARL @ SJTU 346 Jan 03, 2023
Doom-based AI Research Platform for Reinforcement Learning from Raw Visual Information. :godmode:

ViZDoom ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is primarily intended for research

Marek Wydmuch 1.5k Dec 30, 2022
A fork of OpenAI Baselines, implementations of reinforcement learning algorithms

Stable Baselines Stable Baselines is a set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines. You can read a

Ashley Hill 3.7k Jan 01, 2023