TensorFlow Reinforcement Learning

Overview

TRFL

TRFL (pronounced "truffle") is a library built on top of TensorFlow that exposes several useful building blocks for implementing Reinforcement Learning agents.

Installation

TRFL can be installed from pip with the following command: pip install trfl

TRFL will work with both the CPU and GPU version of tensorflow, but to allow for that it does not list Tensorflow as a requirement, so you need to install Tensorflow and Tensorflow-probability separately if you haven't already done so.

Usage Example

import tensorflow as tf
import trfl

# Q-values for the previous and next timesteps, shape [batch_size, num_actions].
q_tm1 = tf.get_variable(
    "q_tm1", initializer=[[1., 1., 0.], [1., 2., 0.]], dtype=tf.float32)
q_t = tf.get_variable(
    "q_t", initializer=[[0., 1., 0.], [1., 2., 0.]], dtype=tf.float32)

# Action indices, discounts and rewards, shape [batch_size].
a_tm1 = tf.constant([0, 1], dtype=tf.int32)
r_t = tf.constant([1, 1], dtype=tf.float32)
pcont_t = tf.constant([0, 1], dtype=tf.float32)  # the discount factor

# Q-learning loss, and auxiliary data.
loss, q_learning = trfl.qlearning(q_tm1, a_tm1, r_t, pcont_t, q_t)

loss is the tensor representing the loss. For Q-learning, it is half the squared difference between the predicted Q-values and the TD targets, shape [batch_size]. Extra information is in the q_learning namedtuple, including q_learning.td_error and q_learning.target.

The loss tensor can be differentiated to derive the corresponding RL update.

reduced_loss = tf.reduce_mean(loss)
optimizer = tf.train.AdamOptimizer(learning_rate=0.1)
train_op = optimizer.minimize(reduced_loss)

All loss functions in the package return both a loss tensor and a namedtuple with extra information, using the above convention, but different functions may have different extra fields. Check the documentation of each function below for more information.

Documentation

Check out the full documentation page here.

Owner
DeepMind
DeepMind
A toolkit for reproducible reinforcement learning research.

garage garage is a toolkit for developing and evaluating reinforcement learning algorithms, and an accompanying library of state-of-the-art implementa

Reinforcement Learning Working Group 1.6k Jan 09, 2023
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 5.4k Jan 04, 2023
A customisable 3D platform for agent-based AI research

DeepMind Lab is a 3D learning environment based on id Software's Quake III Arena via ioquake3 and other open source software. DeepMind Lab provides a

DeepMind 6.8k Jan 05, 2023
Paddle-RLBooks is a reinforcement learning code study guide based on pure PaddlePaddle.

Paddle-RLBooks Welcome to Paddle-RLBooks which is a reinforcement learning code study guide based on pure PaddlePaddle. 欢迎来到Paddle-RLBooks,该仓库主要是针对强化学

AgentMaker 117 Dec 12, 2022
Reinforcement Learning Coach by Intel AI Lab enables easy experimentation with state of the art Reinforcement Learning algorithms

Coach Coach is a python reinforcement learning framework containing implementation of many state-of-the-art algorithms. It exposes a set of easy-to-us

Intel Labs 2.2k Jan 05, 2023
Dopamine is a research framework for fast prototyping of reinforcement learning algorithms.

Dopamine Dopamine is a research framework for fast prototyping of reinforcement learning algorithms. It aims to fill the need for a small, easily grok

Google 10k Jan 07, 2023
Retro Games in Gym

Status: Maintenance (expect bug fixes and minor updates) Gym Retro Gym Retro lets you turn classic video games into Gym environments for reinforcement

OpenAI 2.8k Jan 03, 2023
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

MARL Tricks Our codes for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implemented and standardiz

404 Dec 25, 2022
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
This is the official implementation of Multi-Agent PPO.

MAPPO Chao Yu*, Akash Velu*, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. Website: https://sites.google.com/view/mappo This repository implem

653 Jan 06, 2023
Open world survival environment for reinforcement learning

Crafter Open world survival environment for reinforcement learning. Highlights Crafter is a procedurally generated 2D world, where the agent finds foo

Danijar Hafner 213 Jan 05, 2023
TF-Agents: A reliable, scalable and easy to use TensorFlow library for Contextual Bandits and Reinforcement Learning.

TF-Agents: A reliable, scalable and easy to use TensorFlow library for Contextual Bandits and Reinforcement Learning. TF-Agents makes implementing, de

2.4k Dec 29, 2022
A general-purpose multi-agent training framework.

MALib A general-purpose multi-agent training framework. Installation step1: build environment conda create -n malib python==3.7 -y conda activate mali

MARL @ SJTU 346 Jan 03, 2023
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL ChainerRL is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using Ch

Chainer 1.1k Dec 26, 2022
Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!

Serpent.AI - Game Agent Framework (Python) Update: Revival (May 2020) Development work has resumed on the framework with the aim of bringing it into 2

Serpent.AI 6.4k Jan 05, 2023
A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

OpenAI 29.6k Jan 01, 2023
Modular Deep Reinforcement Learning framework in PyTorch. Companion library of the book "Foundations of Deep Reinforcement Learning".

SLM Lab Modular Deep Reinforcement Learning framework in PyTorch. Documentation: https://slm-lab.gitbook.io/slm-lab/ BeamRider Breakout KungFuMaster M

Wah Loon Keng 1.1k Dec 24, 2022
A platform for Reasoning systems (Reinforcement Learning, Contextual Bandits, etc.)

Applied Reinforcement Learning @ Facebook Overview ReAgent is an open source end-to-end platform for applied reinforcement learning (RL) developed and

Facebook Research 3.3k Jan 05, 2023
Doom-based AI Research Platform for Reinforcement Learning from Raw Visual Information. :godmode:

ViZDoom ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is primarily intended for research

Marek Wydmuch 1.5k Dec 30, 2022