OpenAI Baselines: high-quality implementations of reinforcement learning algorithms

Overview

Status: Maintenance (expect bug fixes and minor updates)

Build status

Baselines

OpenAI Baselines is a set of high-quality implementations of reinforcement learning algorithms.

These algorithms will make it easier for the research community to replicate, refine, and identify new ideas, and will create good baselines to build research on top of. Our DQN implementation and its variants are roughly on par with the scores in published papers. We expect they will be used as a base around which new ideas can be added, and as a tool for comparing a new approach against existing ones.

Prerequisites

Baselines requires python3 (>=3.5) with the development headers. You'll also need system packages CMake, OpenMPI and zlib. Those can be installed as follows

Ubuntu

sudo apt-get update && sudo apt-get install cmake libopenmpi-dev python3-dev zlib1g-dev

Mac OS X

Installation of system packages on Mac requires Homebrew. With Homebrew installed, run the following:

brew install cmake openmpi

Virtual environment

From the general python package sanity perspective, it is a good idea to use virtual environments (virtualenvs) to make sure packages from different projects do not interfere with each other. You can install virtualenv (which is itself a pip package) via

pip install virtualenv

Virtualenvs are essentially folders that have copies of python executable and all python packages. To create a virtualenv called venv with python3, one runs

virtualenv /path/to/venv --python=python3

To activate a virtualenv:

. /path/to/venv/bin/activate

More thorough tutorial on virtualenvs and options can be found here

Tensorflow versions

The master branch supports Tensorflow from version 1.4 to 1.14. For Tensorflow 2.0 support, please use tf2 branch.

Installation

  • Clone the repo and cd into it:

    git clone https://github.com/openai/baselines.git
    cd baselines
  • If you don't have TensorFlow installed already, install your favourite flavor of TensorFlow. In most cases, you may use

    pip install tensorflow-gpu==1.14 # if you have a CUDA-compatible gpu and proper drivers

    or

    pip install tensorflow==1.14

    to install Tensorflow 1.14, which is the latest version of Tensorflow supported by the master branch. Refer to TensorFlow installation guide for more details.

  • Install baselines package

    pip install -e .

MuJoCo

Some of the baselines examples use MuJoCo (multi-joint dynamics in contact) physics simulator, which is proprietary and requires binaries and a license (temporary 30-day license can be obtained from www.mujoco.org). Instructions on setting up MuJoCo can be found here

Testing the installation

All unit tests in baselines can be run using pytest runner:

pip install pytest
pytest

Training models

Most of the algorithms in baselines repo are used as follows:

python -m baselines.run --alg=<name of the algorithm> --env=<environment_id> [additional arguments]

Example 1. PPO with MuJoCo Humanoid

For instance, to train a fully-connected network controlling MuJoCo humanoid using PPO2 for 20M timesteps

python -m baselines.run --alg=ppo2 --env=Humanoid-v2 --network=mlp --num_timesteps=2e7

Note that for mujoco environments fully-connected network is default, so we can omit --network=mlp The hyperparameters for both network and the learning algorithm can be controlled via the command line, for instance:

python -m baselines.run --alg=ppo2 --env=Humanoid-v2 --network=mlp --num_timesteps=2e7 --ent_coef=0.1 --num_hidden=32 --num_layers=3 --value_network=copy

will set entropy coefficient to 0.1, and construct fully connected network with 3 layers with 32 hidden units in each, and create a separate network for value function estimation (so that its parameters are not shared with the policy network, but the structure is the same)

See docstrings in common/models.py for description of network parameters for each type of model, and docstring for baselines/ppo2/ppo2.py/learn() for the description of the ppo2 hyperparameters.

Example 2. DQN on Atari

DQN with Atari is at this point a classics of benchmarks. To run the baselines implementation of DQN on Atari Pong:

python -m baselines.run --alg=deepq --env=PongNoFrameskip-v4 --num_timesteps=1e6

Saving, loading and visualizing models

Saving and loading the model

The algorithms serialization API is not properly unified yet; however, there is a simple method to save / restore trained models. --save_path and --load_path command-line option loads the tensorflow state from a given path before training, and saves it after the training, respectively. Let's imagine you'd like to train ppo2 on Atari Pong, save the model and then later visualize what has it learnt.

python -m baselines.run --alg=ppo2 --env=PongNoFrameskip-v4 --num_timesteps=2e7 --save_path=~/models/pong_20M_ppo2

This should get to the mean reward per episode about 20. To load and visualize the model, we'll do the following - load the model, train it for 0 steps, and then visualize:

python -m baselines.run --alg=ppo2 --env=PongNoFrameskip-v4 --num_timesteps=0 --load_path=~/models/pong_20M_ppo2 --play

NOTE: Mujoco environments require normalization to work properly, so we wrap them with VecNormalize wrapper. Currently, to ensure the models are saved with normalization (so that trained models can be restored and run without further training) the normalization coefficients are saved as tensorflow variables. This can decrease the performance somewhat, so if you require high-throughput steps with Mujoco and do not need saving/restoring the models, it may make sense to use numpy normalization instead. To do that, set 'use_tf=False` in baselines/run.py.

Logging and vizualizing learning curves and other training metrics

By default, all summary data, including progress, standard output, is saved to a unique directory in a temp folder, specified by a call to Python's tempfile.gettempdir(). The directory can be changed with the --log_path command-line option.

python -m baselines.run --alg=ppo2 --env=PongNoFrameskip-v4 --num_timesteps=2e7 --save_path=~/models/pong_20M_ppo2 --log_path=~/logs/Pong/

NOTE: Please be aware that the logger will overwrite files of the same name in an existing directory, thus it's recommended that folder names be given a unique timestamp to prevent overwritten logs.

Another way the temp directory can be changed is through the use of the $OPENAI_LOGDIR environment variable.

For examples on how to load and display the training data, see here.

Subpackages

Benchmarks

Results of benchmarks on Mujoco (1M timesteps) and Atari (10M timesteps) are available here for Mujoco and here for Atari respectively. Note that these results may be not on the latest version of the code, particular commit hash with which results were obtained is specified on the benchmarks page.

To cite this repository in publications:

@misc{baselines,
  author = {Dhariwal, Prafulla and Hesse, Christopher and Klimov, Oleg and Nichol, Alex and Plappert, Matthias and Radford, Alec and Schulman, John and Sidor, Szymon and Wu, Yuhuai and Zhokhov, Peter},
  title = {OpenAI Baselines},
  year = {2017},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/openai/baselines}},
}
Owner
OpenAI
OpenAI
Dopamine is a research framework for fast prototyping of reinforcement learning algorithms.

Dopamine Dopamine is a research framework for fast prototyping of reinforcement learning algorithms. It aims to fill the need for a small, easily grok

Google 10k Jan 07, 2023
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

OpenAI 29.6k Jan 01, 2023
Open world survival environment for reinforcement learning

Crafter Open world survival environment for reinforcement learning. Highlights Crafter is a procedurally generated 2D world, where the agent finds foo

Danijar Hafner 213 Jan 05, 2023
Doom-based AI Research Platform for Reinforcement Learning from Raw Visual Information. :godmode:

ViZDoom ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is primarily intended for research

Marek Wydmuch 1.5k Dec 30, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 5.4k Jan 04, 2023
Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!

Serpent.AI - Game Agent Framework (Python) Update: Revival (May 2020) Development work has resumed on the framework with the aim of bringing it into 2

Serpent.AI 6.4k Jan 05, 2023
OpenAI Baselines: high-quality implementations of reinforcement learning algorithms

Status: Maintenance (expect bug fixes and minor updates) Baselines OpenAI Baselines is a set of high-quality implementations of reinforcement learning

OpenAI 13.5k Jan 07, 2023
A fork of OpenAI Baselines, implementations of reinforcement learning algorithms

Stable Baselines Stable Baselines is a set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines. You can read a

Ashley Hill 3.7k Jan 01, 2023
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

MARL Tricks Our codes for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implemented and standardiz

404 Dec 25, 2022
Monitor your el-cheapo UPS via SNMP

UPSC-SNMP-Agent UPSC-SNMP-Agent exposes your el-cheapo locally connected UPS via the SNMP network management protocol. This enables various equipment

Tom Szilagyi 32 Jul 28, 2022
A platform for Reasoning systems (Reinforcement Learning, Contextual Bandits, etc.)

Applied Reinforcement Learning @ Facebook Overview ReAgent is an open source end-to-end platform for applied reinforcement learning (RL) developed and

Facebook Research 3.3k Jan 05, 2023
This is the official implementation of Multi-Agent PPO.

MAPPO Chao Yu*, Akash Velu*, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. Website: https://sites.google.com/view/mappo This repository implem

653 Jan 06, 2023
Paddle-RLBooks is a reinforcement learning code study guide based on pure PaddlePaddle.

Paddle-RLBooks Welcome to Paddle-RLBooks which is a reinforcement learning code study guide based on pure PaddlePaddle. 欢迎来到Paddle-RLBooks,该仓库主要是针对强化学

AgentMaker 117 Dec 12, 2022
A customisable 3D platform for agent-based AI research

DeepMind Lab is a 3D learning environment based on id Software's Quake III Arena via ioquake3 and other open source software. DeepMind Lab provides a

DeepMind 6.8k Jan 05, 2023
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL ChainerRL is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using Ch

Chainer 1.1k Dec 26, 2022
TF-Agents: A reliable, scalable and easy to use TensorFlow library for Contextual Bandits and Reinforcement Learning.

TF-Agents: A reliable, scalable and easy to use TensorFlow library for Contextual Bandits and Reinforcement Learning. TF-Agents makes implementing, de

2.4k Dec 29, 2022
A toolkit for reproducible reinforcement learning research.

garage garage is a toolkit for developing and evaluating reinforcement learning algorithms, and an accompanying library of state-of-the-art implementa

Reinforcement Learning Working Group 1.6k Jan 09, 2023
Reinforcement Learning Coach by Intel AI Lab enables easy experimentation with state of the art Reinforcement Learning algorithms

Coach Coach is a python reinforcement learning framework containing implementation of many state-of-the-art algorithms. It exposes a set of easy-to-us

Intel Labs 2.2k Jan 05, 2023