Detect textlines in document images

Overview

Build Status

Textline Detection

Detect textlines in document images

Introduction

This tool performs border, region and textline detection from document image data and returns the results as PAGE-XML. The goal of this project is to extract textlines of a document in order to feed them to an OCR model. This is achieved by four successive stages as follows:

The first three stages are based on pixelwise segmentation.

Border detection

For the purpose of text recognition (OCR) and in order to avoid noise being introduced from texts outside the printspace, one first needs to detect the border of the printed frame. This is done by a binary pixelwise-segmentation model trained on a dataset of 2,000 documents where about 1,200 of them come from the dhSegment project (you can download the dataset from here) and the remainder having been annotated in SBB. For border detection, the model needs to be fed with the whole image at once rather than separated in patches.

Layout detection

As a next step, text regions need to be identified by means of layout detection. Again a pixelwise segmentation model was trained on 131 labeled images from the SBB digital collections, including some data augmentation. Since the target of this tool are historical documents, we consider as main region types text regions, separators, images, tables and background - each with their own subclasses, e.g. in the case of text regions, subclasses like header/heading, drop capital, main body text etc. While it would be desirable to detect and classify each of these classes in a granular way, there are also limitations due to having a suitably large and balanced training set. Accordingly, the current version of this tool is focussed on the main region types background, text region, image and separator.

Textline detection

In a subsequent step, binary pixelwise segmentation is used again to classify pixels in a document that constitute textlines. For textline segmentation, a model was initially trained on documents with only one column/block of text and some augmentation with regards to scaling. By fine-tuning the parameters also for multi-column documents, additional training data was produced that resulted in a much more robust textline detection model.

Heuristic methods

Some heuristic methods are also employed to further improve the model predictions:

  • After border detection, the largest contour is determined by a bounding box and the image cropped to these coordinates.
  • For text region detection, the image is scaled up to make it easier for the model to detect background space between text regions.
  • A minimum area is defined for text regions in relation to the overall image dimensions, so that very small regions that are actually noise can be filtered out.
  • Deskewing is applied on the text region level (due to regions having different degrees of skew) in order to improve the textline segmentation result.
  • After deskewing, a calculation of the pixel distribution on the X-axis allows the separation of textlines (foreground) and background pixels.
  • Finally, using the derived coordinates, bounding boxes are determined for each textline.

Installation

pip install .

Models

In order to run this tool you also need trained models. You can download our pretrained models from here:
https://qurator-data.de/sbb_textline_detector/

Usage

The basic command-line interface can be called like this:

sbb_textline_detector -i <image file name> -o <directory to write output xml> -m <directory of models>

The tool does accept raw (RGB/grayscale) images as input, but results will be much improved when a properly binarized image is used instead. We also provide a tool to perform this binarization step.

Usage with OCR-D

In addition, there is a CLI for OCR-D:

ocrd-sbb-textline-detector -I OCR-D-IMG -O OCR-D-SEG-LINE-SBB -P model /path/to/the/models/textline_detection

Segmentation works on raw (RGB/grayscale) images, but honours AlternativeImages from earlier preprocessing steps, so it's OK to perform (say) deskewing first, followed by textline detection. Results from previous cropping or binarization steps are allowed and retained, but will be ignored. (So these are only useful if themselves needed for deskewing or dewarping prior to segmentation.)

This processor will replace any previously existing Border, ReadingOrder and TextRegion instances (but keep other region types unchanged).

Owner
QURATOR-SPK
Curation Technologies
QURATOR-SPK
轻量级公式 OCR 小工具:一键识别各类公式图片,并转换为 LaTeX 格式

QC-Formula | 青尘公式 OCR 介绍 轻量级开源公式 OCR 小工具:一键识别公式图片,并转换为 LaTeX 格式。 支持从 电脑本地 导入公式图片;(后续版本将支持直接从网页导入图片) 公式图片支持 .png / .jpg / .bmp,大小为 4M 以内均可; 支持印刷体及手写体,前

青尘工作室 26 Jan 07, 2023
Links to awesome OCR projects

Awesome OCR This list contains links to great software tools and libraries and literature related to Optical Character Recognition (OCR). Contribution

Konstantin Baierer 2.2k Jan 02, 2023
virtual mouse which can copy files, close tabs and many other features !

AI Virtual Mouse Controller Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera. Fingertip loca

Diwas Pandey 23 Oct 05, 2021
Handwritten Character Recognition using CNN

Handwritten Character Recognition using CNN Problem Definition The main objective of this project is to solve the problem of handwritten character rec

Mohit Kaushik 4 Mar 02, 2022
Perspective recovery of text using transformed ellipses

unproject_text Perspective recovery of text using transformed ellipses. See full writeup at https://mzucker.github.io/2016/10/11/unprojecting-text-wit

Matt Zucker 111 Nov 13, 2022
📷 Face Recognition using Haar-Cascade Classifier, OpenCV, and Python

Face-Recognition-System Face Recognition using Haar-Cascade Classifier, OpenCV and Python. This project is based on face detection and face recognitio

1 Jan 10, 2022
Generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv

basic-dataset-generator-from-image-of-numbers generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv inpu

1 Jan 01, 2022
Introduction to image processing, most used and popular functions of OpenCV

👀 OpenCV 101 Introduction to image processing, most used and popular functions of OpenCV go here.

Vusal Ismayilov 3 Jul 02, 2022
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition

SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition PDF Abstract Explainable artificial intelligence has been gaining attention

87 Dec 26, 2022

Installations for running keras-theano on GPU Upgrade pip and install opencv2 cd ~ pip install --upgrade pip pip install opencv-python Upgrade keras

Berat Kurar Barakat 14 Sep 30, 2022
Apply different text recognition services to images of handwritten documents.

Handprint The Handwritten Page Recognition Test is a command-line program that invokes HTR (handwritten text recognition) services on images of docume

Caltech Library 117 Jan 02, 2023
An official PyTorch implementation of the paper "Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences", ICCV 2021.

PyTorch implementation of Learning by Aligning (ICCV 2021) This is an official PyTorch implementation of the paper "Learning by Aligning: Visible-Infr

CV Lab @ Yonsei University 30 Nov 05, 2022
Use Youdao OCR API to covert your clipboard image to text.

Alfred Clipboard OCR 注:本仓库基于 oott123/alfred-clipboard-ocr 的逻辑用 Python 重写,换用了有道 AI 的 API,准确率更高,有效防止百度导致隐私泄露等问题,并且有道 AI 初始提供的 50 元体验金对于其资费而言个人用户基本可以永久使用

Junlin Liu 6 Sep 19, 2022
A Vietnamese personal card OCR website built with Django.

Django VietCardOCR Installation Creation of virtual environments is done by executing the command venv: python -m venv venv That will create a new fol

Truong Hoang Thuan 4 Sep 04, 2021
OCR-D-compliant page segmentation

ocrd_segment This repository aims to provide a number of OCR-D-compliant processors for layout analysis and evaluation. Installation In your virtual e

OCR-D 59 Sep 10, 2022
This is the open source implementation of the ICLR2022 paper "StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis"

StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image

Meta Research 840 Dec 26, 2022
Msos searcher - A half-hearted attempt at finding a magic square of squares

MSOS searcher A half-hearted attempt at finding (or rather searching) a MSOS (Magic Square of Squares) in the spirit of the Parker Square. Running I r

Niels Mündler 1 Jan 02, 2022
A version of nrsc5-gui that merges the interface developed by cmnybo with the architecture developed by zefie in order to start a new baseline that is not heavily dependent upon Python processing.

NRSC5-DUI is a graphical interface for nrsc5. It makes it easy to play your favorite FM HD radio stations using an RTL-SDR dongle. It will also displa

61 Dec 22, 2022
Opencv face recognition desktop application

Opencv-Face-Recognition Opencv face recognition desktop application Program developed by Gustavo Wydler Azuaga - 2021-11-19 Screenshots of the program

Gus 1 Nov 19, 2021
Qrcode Attendence System with Opencv and Pyzbar

Setup process Creates a virtual environment (Scripts that ensure executed Python code uses the Python interpreter and site packages installed inside t

Ganesh 5 Aug 01, 2022