Python PostgreSQL adapter to stream results of multi-statement queries without a server-side cursor

Overview

streampq CircleCI Test Coverage

Stream results of multi-statement PostgreSQL queries from Python without server-side cursors. Has benefits over some other Python PostgreSQL libraries:

  • Streams results from complex multi-statement queries even though SQL doesn't allow server-side cursors for such queries - suitable for large amounts of results that don't fit in memory.

  • CTRL+C (SIGINT) by default behaves as expected even during slow queries - a KeyboardInterrupt is raised and quickly bubbles up through streampq code. Unless client code prevents it, the program will exit.

  • Every effort is made to cancel queries on KeyboardInterrupt, SystemExit, or errors - the server doesn't continue needlessly using resources.

Particularly useful when temporary tables are needed to store intermediate results in multi-statement SQL scripts.

Installation

pip install streampq

The libpq binary library is also required. This is typically either already installed, or installed by:

  • macOS + brew: brew install libpq
  • Linux (Debian): apt install libpq5
  • Linux (Red Hat):yum install postgresql-libs

The only runtime dependencies are libpq and Python itself.

Usage

from streampq import streampq_connect

# libpq connection paramters
# https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-PARAMKEYWORDS
#
# Any can be ommitted and environment variables will be used instead
# https://www.postgresql.org/docs/current/libpq-envars.html
connection_params = (
    ('host', 'localhost'),
    ('port', '5432'),
    ('dbname', 'postgres'),
    ('user', 'postgres'),
    ('password', 'password'),
)

# SQL statement(s) - if more than one, separate by ;
sql = '''
    SELECT * FROM my_table;
    SELECT * FROM my_other_table;
'''

# Connection and querying is via a context manager
with streampq_connect(connection_params) as query:
    for (columns, rows) in query(sql):
        print(columns)  # Tuple of column names
        for row in rows:
            print(row)  # Tuple of row  values

PostgreSQL types to Python type decoding

There are 164 built-in PostgreSQL data types (including array types), and streampq converts them to Python types. In summary:

PostgreSQL types Python type
null None
text (e.g. varchar), xml, network addresses, and money str
byte (e.g. bytea) bytes
integer (e.g. int4) int
inexact real number (e.g. float4) float
exact real number (e.g. numeric) Decimal
date date
timestamp datetime (without timezone)
timestamptz datetime (with offset timezone)
json and jsonb output of json.loads
interval streampq.Interval
range (e.g. daterange) streampq.Range
multirange (e.g. datemultirange) tuples of streampq.Range
arrays and vectors tuple (of any of the above types, or of nested tuples)

To customise these, override the default value of the get_decoders parameter of the streampq_connect function in streampq.py.

In general, built-in types are preferred over custom types, and immutable types are preferred over mutable.

streampq.Interval

The Python built-in timedelta type is not used for PostgreSQL interval since timedelta does not offer a way to store PostgreSQL intervals of years or months, other than converting to days which would be a loss of information.

Instead, a namedtuple is defined, streampq.Interval, with members:

Member Type
years int
months int
days int
hours int
minutes int
seconds Decimal

streampq.Range

There is no Python built-in type for a PosgreSQL range. So for these, a namedtuple is defined, streampq.Range, with members:

Member Type
lower int, date, datetime (without timezone), or datetime (with offset timezone)
upper int, date, datetime (without timezone), or datetime (with offset timezone)
bounds str - one of (), (], [), or []

Bind parameters - literals

Dynamic SQL literals can be bound using the literals parameter of the query function. It must be an iterable of key-value pairs.

sql = '''
    SELECT * FROM my_table WHERE my_col = {my_col_value};
'''

with streampq_connect(connection_params) as query:
    for (columns, rows) in query(sql, literals=(
        ('my_col_value', 'my-value'),
    )):
        for row in rows:
            pass

Bind parameters - identifiers

Dynamic SQL identifiers, e.g. column names, can be bound using the identifiers parameter of the query function. It must be an iterable of key-value pairs.

sql = '''
    SELECT * FROM my_table WHERE {column_name} = 'my-value';
'''

with streampq_connect(connection_params) as query:
    for (columns, rows) in query(sql, identifiers=(
        ('column_name', 'my_col'),
    )):
        for row in rows:
            pass

Identifiers and literals use different escaping rules - hence the need for 2 different parameters.

Single-statement SQL queries

While this library is specialsed for multi-statement queries, it works fine when there is only one. In this case the iterable returned from the query function yields only a single (columns, rows) pair.

Exceptions

Exceptions derive from streampq.StreamPQError. If there is any more information available on the error, it's added as a string in its args property. This is included in the string representation of the exception by default.

Exception hierarchy

  • StreamPQError

    Base class for all explicitly-thrown exceptions

    • ConnectionError

      An error occurred while attempting to connect to the database.

    • QueryError

      An error occurred while attempting to run a query. Typically this is due to a syntax error or a missing column.

    • CancelError

      An error occurred while attempting to cancel a query.

    • CommunicationError

      An error occurred communicating with the database after successful connection.

Owner
Department for International Trade
Department for International Trade
Micro ODM for MongoDB

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

Roman 993 Jan 03, 2023
Py2neo is a comprehensive toolkit for working with Neo4j from within Python applications or from the command line.

Py2neo Py2neo is a client library and toolkit for working with Neo4j from within Python applications and from the command line. The library supports b

Nigel Small 1.2k Jan 02, 2023
Implementing basic MongoDB CRUD (Create, Read, Update, Delete) queries, using Python.

MongoDB with Python Implementing basic MongoDB CRUD (Create, Read, Update, Delete) queries, using Python. We can connect to a MongoDB database hosted

MousamSingh 4 Dec 01, 2021
PostgreSQL database adapter for the Python programming language

psycopg2 - Python-PostgreSQL Database Adapter Psycopg is the most popular PostgreSQL database adapter for the Python programming language. Its main fe

The Psycopg Team 2.8k Jan 05, 2023
AWS SDK for Python

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

the boto project 7.8k Jan 04, 2023
aiopg is a library for accessing a PostgreSQL database from the asyncio

aiopg aiopg is a library for accessing a PostgreSQL database from the asyncio (PEP-3156/tulip) framework. It wraps asynchronous features of the Psycop

aio-libs 1.3k Jan 03, 2023
A Relational Database Management System for a miniature version of Twitter written in MySQL with CLI in python.

Mini-Twitter-Database This was done as a database design course project at Amirkabir university of technology. This is a relational database managemen

Ali 12 Nov 23, 2022
SQL for Humans™

Records: SQL for Humans™ Records is a very simple, but powerful, library for making raw SQL queries to most relational databases. Just write SQL. No b

Ken Reitz 6.9k Jan 03, 2023
A simple wrapper to make a flat file drop in raplacement for mongodb out of TinyDB

Purpose A simple wrapper to make a drop in replacement for mongodb out of tinydb. This module is an attempt to add an interface familiar to those curr

180 Jan 01, 2023
Import entity definition document into SQLie3. Manage the entity. Also, create a "Create Table SQL file".

EntityDocumentMaker Version 1.00 After importing the entity definition (Excel file), store the data in sqlite3. エンティティ定義(Excelファイル)をインポートした後、データをsqlit

G-jon FujiYama 1 Jan 09, 2022
Baserow is an open source no-code database tool and Airtable alternative

Baserow is an open source no-code database tool and Airtable alternative

1.3k Jan 01, 2023
google-cloud-bigtable Apache-2google-cloud-bigtable (🥈31 · ⭐ 3.5K) - Google Cloud Bigtable API client library. Apache-2

Python Client for Google Cloud Bigtable Google Cloud Bigtable is Google's NoSQL Big Data database service. It's the same database that powers many cor

Google APIs 39 Dec 03, 2022
Find graph motifs using intuitive notation

d o t m o t i f Find graph motifs using intuitive notation DotMotif is a library that identifies subgraphs or motifs in a large graph. It looks like t

APL BRAIN 45 Jan 02, 2023
Pysolr — Python Solr client

pysolr pysolr is a lightweight Python client for Apache Solr. It provides an interface that queries the server and returns results based on the query.

Haystack Search 626 Dec 01, 2022
Query multiple mongoDB database collections easily

leakscoop Perform queries across multiple MongoDB databases and collections, where the field names and the field content structure in each database ma

bagel 5 Jun 24, 2021
PyRemoteSQL is a python SQL client that allows you to connect to your remote server with phpMyAdmin installed.

PyRemoteSQL Python MySQL remote client Basically this is a python SQL client that allows you to connect to your remote server with phpMyAdmin installe

ProbablyX 3 Nov 04, 2022
db.py is an easier way to interact with your databases

db.py What is it Databases Supported Features Quickstart - Installation - Demo How To Contributing TODO What is it? db.py is an easier way to interact

yhat 1.2k Jan 03, 2023
aiosql - Simple SQL in Python

aiosql - Simple SQL in Python SQL is code. Write it, version control it, comment it, and run it using files. Writing your SQL code in Python programs

Will Vaughn 1.1k Jan 08, 2023
A pythonic interface to Amazon's DynamoDB

PynamoDB A Pythonic interface for Amazon's DynamoDB. DynamoDB is a great NoSQL service provided by Amazon, but the API is verbose. PynamoDB presents y

2.1k Dec 30, 2022
Async ODM (Object Document Mapper) for MongoDB based on python type hints

ODMantic Documentation: https://art049.github.io/odmantic/ Asynchronous ODM(Object Document Mapper) for MongoDB based on standard python type hints. I

Arthur Pastel 732 Dec 31, 2022