SQL for Humans™

Overview

Records: SQL for Humans™

https://travis-ci.org/kennethreitz/records.svg?branch=master

Records is a very simple, but powerful, library for making raw SQL queries to most relational databases.

https://farm1.staticflickr.com/569/33085227621_7e8da49b90_k_d.jpg

Just write SQL. No bells, no whistles. This common task can be surprisingly difficult with the standard tools available. This library strives to make this workflow as simple as possible, while providing an elegant interface to work with your query results.

Database support includes RedShift, Postgres, MySQL, SQLite, Oracle, and MS-SQL (drivers not included).


☤ The Basics

We know how to write SQL, so let's send some to our database:

import records

db = records.Database('postgres://...')
rows = db.query('select * from active_users')    # or db.query_file('sqls/active-users.sql')

Grab one row at a time:

>>> rows[0]
<Record {"username": "model-t", "active": true, "name": "Henry Ford", "user_email": "[email protected]", "timezone": "2016-02-06 22:28:23.894202"}>

Or iterate over them:

for r in rows:
    print(r.name, r.user_email)

Values can be accessed many ways: row.user_email, row['user_email'], or row[3].

Fields with non-alphanumeric characters (like spaces) are also fully supported.

Or store a copy of your record collection for later reference:

>>> rows.all()
[<Record {"username": ...}>, <Record {"username": ...}>, <Record {"username": ...}>, ...]

If you're only expecting one result:

>>> rows.first()
<Record {"username": ...}>

Other options include rows.as_dict() and rows.as_dict(ordered=True).

☤ Features

  • Iterated rows are cached for future reference.
  • $DATABASE_URL environment variable support.
  • Convenience Database.get_table_names method.
  • Command-line records tool for exporting queries.
  • Safe parameterization: Database.query('life=:everything', everything=42).
  • Queries can be passed as strings or filenames, parameters supported.
  • Transactions: t = Database.transaction(); t.commit().
  • Bulk actions: Database.bulk_query() & Database.bulk_query_file().

Records is proudly powered by SQLAlchemy and Tablib.

☤ Data Export Functionality

Records also features full Tablib integration, and allows you to export your results to CSV, XLS, JSON, HTML Tables, YAML, or Pandas DataFrames with a single line of code. Excellent for sharing data with friends, or generating reports.

>>> print(rows.dataset)
username|active|name      |user_email       |timezone
--------|------|----------|-----------------|--------------------------
model-t |True  |Henry Ford|[email protected]|2016-02-06 22:28:23.894202
...

Comma Separated Values (CSV)

>>> print(rows.export('csv'))
username,active,name,user_email,timezone
model-t,True,Henry Ford,[email protected],2016-02-06 22:28:23.894202
...

YAML Ain't Markup Language (YAML)

>>> print(rows.export('yaml'))
- {active: true, name: Henry Ford, timezone: '2016-02-06 22:28:23.894202', user_email: model-t@gmail.com, username: model-t}
...

JavaScript Object Notation (JSON)

>>> print(rows.export('json'))
[{"username": "model-t", "active": true, "name": "Henry Ford", "user_email": "[email protected]", "timezone": "2016-02-06 22:28:23.894202"}, ...]

Microsoft Excel (xls, xlsx)

with open('report.xls', 'wb') as f:
    f.write(rows.export('xls'))

Pandas DataFrame

>>> rows.export('df')
    username  active       name        user_email                   timezone
0    model-t    True Henry Ford model-t@gmail.com 2016-02-06 22:28:23.894202

You get the point. All other features of Tablib are also available, so you can sort results, add/remove columns/rows, remove duplicates, transpose the table, add separators, slice data by column, and more.

See the Tablib Documentation for more details.

☤ Installation

Of course, the recommended installation method is pipenv:

$ pipenv install records[pandas]
✨🍰✨

☤ Command-Line Tool

As an added bonus, a records command-line tool is automatically included. Here's a screenshot of the usage information:

Screenshot of Records Command-Line Interface.

☤ Thank You

Thanks for checking this library out! I hope you find it useful.

Of course, there's always room for improvement. Feel free to open an issue so we can make Records better, stronger, faster.

Owner
Ken Reitz
Software Engineer focused on abstractions, reducing cognitive overhead, and Design for Humans.
Ken Reitz
Python PostgreSQL database performance insights. Locks, index usage, buffer cache hit ratios, vacuum stats and more.

Python PG Extras Python port of Heroku PG Extras with several additions and improvements. The goal of this project is to provide powerful insights int

Paweł Urbanek 35 Nov 01, 2022
A Telegram Bot to manage Redis Database.

A Telegram Bot to manage Redis database. Direct deploy on heroku Manual Deployment python3, git is required Clone repo git clone https://github.com/bu

Amit Sharma 4 Oct 21, 2022
aioodbc - is a library for accessing a ODBC databases from the asyncio

aioodbc aioodbc is a Python 3.5+ module that makes it possible to access ODBC databases with asyncio. It relies on the awesome pyodbc library and pres

aio-libs 253 Dec 31, 2022
aiomysql is a library for accessing a MySQL database from the asyncio

aiomysql aiomysql is a "driver" for accessing a MySQL database from the asyncio (PEP-3156/tulip) framework. It depends on and reuses most parts of PyM

aio-libs 1.5k Jan 03, 2023
PostgreSQL database adapter for the Python programming language

psycopg2 - Python-PostgreSQL Database Adapter Psycopg is the most popular PostgreSQL database adapter for the Python programming language. Its main fe

The Psycopg Team 2.8k Jan 05, 2023
Python interface to Oracle Database conforming to the Python DB API 2.0 specification.

cx_Oracle version 8.2 (Development) cx_Oracle is a Python extension module that enables access to Oracle Database. It conforms to the Python database

Oracle 841 Dec 21, 2022
asyncio compatible driver for elasticsearch

asyncio client library for elasticsearch aioes is a asyncio compatible library for working with Elasticsearch The project is abandoned aioes is not su

97 Sep 05, 2022
Records is a very simple, but powerful, library for making raw SQL queries to most relational databases.

Records: SQL for Humans™ Records is a very simple, but powerful, library for making raw SQL queries to most relational databases. Just write SQL. No b

Kenneth Reitz 6.9k Jan 03, 2023
SAP HANA Connector in pure Python

SAP HANA Database Client for Python Important Notice This public repository is read-only and no longer maintained. The active maintained alternative i

SAP Archive 299 Nov 20, 2022
A pandas-like deferred expression system, with first-class SQL support

Ibis: Python data analysis framework for Hadoop and SQL engines Service Status Documentation Conda packages PyPI Azure Coverage Ibis is a toolbox to b

Ibis Project 2.3k Jan 06, 2023
Pandas on AWS - Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).

AWS Data Wrangler Pandas on AWS Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretMana

Amazon Web Services - Labs 3.3k Dec 31, 2022
Generate database table diagram from SQL data definition.

sql2diagram Generate database table diagram from SQL data definition. e.g. "CREATE TABLE ..." See Example below How does it works? Analyze the SQL to

django-cas-ng 1 Feb 08, 2022
Use SQL query in a jupyter notebook!

SQL-query Use SQL query in a jupyter notebook! The table I used can be found on UN Data. Or you can just click the link and download the file undata_s

Chuqin 2 Oct 05, 2022
edaSQL is a library to link SQL to Exploratory Data Analysis and further more in the Data Engineering.

edaSQL is a python library to bridge the SQL with Exploratory Data Analysis where you can connect to the Database and insert the queries. The query results can be passed to the EDA tool which can giv

Tamil Selvan 8 Dec 12, 2022
db.py is an easier way to interact with your databases

db.py What is it Databases Supported Features Quickstart - Installation - Demo How To Contributing TODO What is it? db.py is an easier way to interact

yhat 1.2k Jan 03, 2023
A tiny python web application based on Flask to set, get, expire, delete keys of Redis database easily with direct link at the browser.

First Redis Python (CRUD) A tiny python web application based on Flask to set, get, expire, delete keys of Redis database easily with direct link at t

Max Base 9 Dec 24, 2022
sync/async MongoDB ODM, yes.

μMongo: sync/async ODM μMongo is a Python MongoDB ODM. It inception comes from two needs: the lack of async ODM and the difficulty to do document (un)

Scille 428 Dec 29, 2022
Implementing basic MySQL CRUD (Create, Read, Update, Delete) queries, using Python.

MySQL with Python Implementing basic MySQL CRUD (Create, Read, Update, Delete) queries, using Python. We can connect to a MySQL database hosted locall

MousamSingh 5 Dec 01, 2021
Query multiple mongoDB database collections easily

leakscoop Perform queries across multiple MongoDB databases and collections, where the field names and the field content structure in each database ma

bagel 5 Jun 24, 2021
A framework based on tornado for easier development, scaling up and maintenance

turbo 中文文档 Turbo is a framework for fast building web site and RESTFul api, based on tornado. Easily scale up and maintain Rapid development for RESTF

133 Dec 06, 2022