db.py is an easier way to interact with your databases

Related tags

Database Driversdb.py
Overview

db.py

What is it?

db.py is an easier way to interact with your databases. It makes it easier to explore tables, columns, views, etc. It puts the emphasis on user interaction, information display, and providing easy to use helper functions.

db.py uses pandas to manage data, so if you're already using pandas, db.py should feel pretty natural. It's also fully compatible with the IPython Notebook, so not only is db.py extremely functional, it's also pretty.

Blog Post

Databases Supported

  • PostgreSQL
  • MySQL
  • SQLite
  • Redshift
  • MS SQL Server
  • Oracle

db.py let's you...

Execute queries

>>> db.query_from_file("myscript.sql")
       _id                    datetime           user_id  n
0  1290000  10/Jun/2014:18:21:27 +0000  0000015b37cd0964  1
1  9120009  23/Jun/2014:02:11:21 +0000  00006e01a6419822  1
2  1683874  23/Jun/2014:02:11:48 +0000  00006e01a6419822  2
3  2562153  23/Jun/2014:02:12:57 +0000  00006e01a6419822  3
4   393019  14/Jun/2014:16:05:18 +0000  000099d569e3a216  1
5  3542568  14/Jun/2014:16:06:02 +0000  000099d569e3a216  2

Fully compatible with predictive type

>>> db.tables.
db.tables.Album          db.tables.Customer       db.tables.Genre          db.tables.InvoiceLine    db.tables.Playlist       db.tables.Track
db.tables.Artist         db.tables.Employee       db.tables.Invoice        db.tables.MediaType      db.tables.PlaylistTrack  db.tables.tables

Friendly displays

>>> db.tables.Track
+-------------------------------------------------------------+
|                            Album                            |
+----------+---------------+-----------------+----------------+
| Column   | Type          | Foreign Keys    | Reference Keys |
+----------+---------------+-----------------+----------------+
| AlbumId  | INTEGER       |                 | Track.AlbumId  |
| Title    | NVARCHAR(160) |                 |                |
| ArtistId | INTEGER       | Artist.ArtistId |                |
+----------+---------------+-----------------+----------------+

Directly integrated with pandas

>>> db.tables.Track.head()
   TrackId                                     Name  AlbumId  MediaTypeId  \
0        1  For Those About To Rock (We Salute You)        1            1
1        2                        Balls to the Wall        2            2
2        3                          Fast As a Shark        3            2
3        4                        Restless and Wild        3            2
4        5                     Princess of the Dawn        3            2
5        6                    Put The Finger On You        1            1

   GenreId                                           Composer  Milliseconds  \
0        1          Angus Young, Malcolm Young, Brian Johnson        343719
1        1                                               None        342562
2        1  F. Baltes, S. Kaufman, U. Dirkscneider & W. Ho...        230619
3        1  F. Baltes, R.A. Smith-Diesel, S. Kaufman, U. D...        252051
4        1                         Deaffy & R.A. Smith-Diesel        375418
5        1          Angus Young, Malcolm Young, Brian Johnson        205662

      Bytes  UnitPrice
0  11170334       0.99
1   5510424       0.99
2   3990994       0.99
3   4331779       0.99
4   6290521       0.99
5   6713451       0.99

Create queries using Handlebars style templates

q = """
SELECT
    '{{ name }}' as table_name, sum(1) as cnt
FROM
    {{ name }}
GROUP BY
    table_name
"""
data = [
  {"name": "Album"},
  {"name": "Artist"},
  {"name": "Track"}
]
db.query(q, data=data)
  table_name   cnt
0      Album   347
1     Artist   275
2      Track  3503

Search your schema

>>> db.find_column("*Id*")
+---------------+---------------+---------+
| Table         |  Column Name  | Type    |
+---------------+---------------+---------+
| Album         |    AlbumId    | INTEGER |
| Album         |    ArtistId   | INTEGER |
| Artist        |    ArtistId   | INTEGER |
| Customer      |  SupportRepId | INTEGER |
| Customer      |   CustomerId  | INTEGER |
| Employee      |   EmployeeId  | INTEGER |
| Genre         |    GenreId    | INTEGER |
| Invoice       |   InvoiceId   | INTEGER |
| Invoice       |   CustomerId  | INTEGER |
| InvoiceLine   |   InvoiceId   | INTEGER |
| InvoiceLine   |    TrackId    | INTEGER |
| InvoiceLine   | InvoiceLineId | INTEGER |
| MediaType     |  MediaTypeId  | INTEGER |
| Playlist      |   PlaylistId  | INTEGER |
| PlaylistTrack |    TrackId    | INTEGER |
| PlaylistTrack |   PlaylistId  | INTEGER |
| Track         |  MediaTypeId  | INTEGER |
| Track         |    TrackId    | INTEGER |
| Track         |    AlbumId    | INTEGER |
| Track         |    GenreId    | INTEGER |
+---------------+---------------+---------+

IPython Notebook friendly

Quickstart

Installation

db.py is on PyPi.

$ pip install db.py

The database libraries being used under the hood are optional dependencies (if you use mysql, you probably don't care about installing psycopg2). Based on the databases you're using, you'll need one (or many) of the following:

Demo

>>> from db import DemoDB # or connect to your own using DB. see below
>>> db = DemoDB() # comes from: http://chinookdatabase.codeplex.com/
>>> db.tables
+---------------+----------------------------------------------------------------------------------+
| Table         | Columns                                                                          |
+---------------+----------------------------------------------------------------------------------+
| Album         | AlbumId, Title, ArtistId                                                         |
| Artist        | ArtistId, Name                                                                   |
| Customer      | CustomerId, FirstName, LastName, Company, Address, City, State, Country, PostalC |
|               | ode, Phone, Fax, Email, SupportRepId                                             |
| Employee      | EmployeeId, LastName, FirstName, Title, ReportsTo, BirthDate, HireDate, Address, |
|               |  City, State, Country, PostalCode, Phone, Fax, Email                             |
| Genre         | GenreId, Name                                                                    |
| Invoice       | InvoiceId, CustomerId, InvoiceDate, BillingAddress, BillingCity, BillingState, B |
|               | illingCountry, BillingPostalCode, Total                                          |
| InvoiceLine   | InvoiceLineId, InvoiceId, TrackId, UnitPrice, Quantity                           |
| MediaType     | MediaTypeId, Name                                                                |
| Playlist      | PlaylistId, Name                                                                 |
| PlaylistTrack | PlaylistId, TrackId                                                              |
| Track         | TrackId, Name, AlbumId, MediaTypeId, GenreId, Composer, Milliseconds, Bytes, Uni |
|               | tPrice                                                                           |
+---------------+----------------------------------------------------------------------------------+
>>> db.tables.Customer
+------------------------------------------------------------------------+
|                                Customer                                |
+--------------+--------------+---------------------+--------------------+
| Column       | Type         | Foreign Keys        | Reference Keys     |
+--------------+--------------+---------------------+--------------------+
| CustomerId   | INTEGER      |                     | Invoice.CustomerId |
| FirstName    | NVARCHAR(40) |                     |                    |
| LastName     | NVARCHAR(20) |                     |                    |
| Company      | NVARCHAR(80) |                     |                    |
| Address      | NVARCHAR(70) |                     |                    |
| City         | NVARCHAR(40) |                     |                    |
| State        | NVARCHAR(40) |                     |                    |
| Country      | NVARCHAR(40) |                     |                    |
| PostalCode   | NVARCHAR(10) |                     |                    |
| Phone        | NVARCHAR(24) |                     |                    |
| Fax          | NVARCHAR(24) |                     |                    |
| Email        | NVARCHAR(60) |                     |                    |
| SupportRepId | INTEGER      | Employee.EmployeeId |                    |
+--------------+--------------+---------------------+--------------------+
>>> db.tables.Customer.sample()
   CustomerId  FirstName    LastName  \
0           4      Bjørn      Hansen
1          26    Richard  Cunningham
2           1       Luís   Gonçalves
3          21      Kathy       Chase
4           6     Helena        Holý
5          14       Mark     Philips
6          49  Stanisław      Wójcik
7          19        Tim       Goyer
8          45   Ladislav      Kovács
9           8       Daan     Peeters

                                            Company  \
0                                              None
1                                              None
2  Embraer - Empresa Brasileira de Aeronáutica S.A.
3                                              None
4                                              None
5                                             Telus
6                                              None
7                                        Apple Inc.
8                                              None
9                                              None

                           Address                 City State         Country  \
0                 Ullevålsveien 14                 Oslo  None          Norway
1              2211 W Berry Street           Fort Worth    TX             USA
2  Av. Brigadeiro Faria Lima, 2170  São José dos Campos    SP          Brazil
3                 801 W 4th Street                 Reno    NV             USA
4                    Rilská 3174/6               Prague  None  Czech Republic
5                   8210 111 ST NW             Edmonton    AB          Canada
6                     Ordynacka 10               Warsaw  None          Poland
7                  1 Infinite Loop            Cupertino    CA             USA
8                Erzsébet krt. 58.             Budapest  None         Hungary
9                  Grétrystraat 63             Brussels  None         Belgium

  PostalCode               Phone                 Fax  \
0       0171     +47 22 44 22 22                None
1      76110   +1 (817) 924-7272                None
2  12227-000  +55 (12) 3923-5555  +55 (12) 3923-5566
3      89503   +1 (775) 223-7665                None
4      14300    +420 2 4177 0449                None
5    T6G 2C7   +1 (780) 434-4554   +1 (780) 434-5565
6     00-358    +48 22 828 37 39                None
7      95014   +1 (408) 996-1010   +1 (408) 996-1011
8     H-1073                None                None
9       1000    +32 02 219 03 03                None

                      Email  SupportRepId
0     bjorn.hansen@yahoo.no             4
1  ricunningham@hotmail.com             4
2      luisg@embraer.com.br             3
3       kachase@hotmail.com             5
4           hholy@gmail.com             5
5        mphilips12@shaw.ca             5
6    stanisław.wójcik@wp.pl             4
7          tgoyer@apple.com             3
8  ladislav_kovacs@apple.hu             3
9     daan_peeters@apple.be             4
>>> db.find_column("*Name*")
+-----------+-------------+---------------+
| Table     | Column Name | Type          |
+-----------+-------------+---------------+
| Artist    |     Name    | NVARCHAR(120) |
| Customer  |  FirstName  | NVARCHAR(40)  |
| Customer  |   LastName  | NVARCHAR(20)  |
| Employee  |  FirstName  | NVARCHAR(20)  |
| Employee  |   LastName  | NVARCHAR(20)  |
| Genre     |     Name    | NVARCHAR(120) |
| MediaType |     Name    | NVARCHAR(120) |
| Playlist  |     Name    | NVARCHAR(120) |
| Track     |     Name    | NVARCHAR(200) |
+-----------+-------------+---------------+
>>> db.find_table("A*")
+--------+--------------------------+
| Table  | Columns                  |
+--------+--------------------------+
| Album  | AlbumId, Title, ArtistId |
| Artist | ArtistId, Name           |
+--------+--------------------------+
>>> db.query("select * from Artist limit 10;")
   ArtistId                  Name
0         1                 AC/DC
1         2                Accept
2         3             Aerosmith
3         4     Alanis Morissette
4         5       Alice In Chains
5         6  Antônio Carlos Jobim
6         7          Apocalyptica
7         8            Audioslave
8         9              BackBeat
9        10          Billy Cobham

How To

Connecting to a Database

The DB() object

Arguments

  • username: your username
  • password: your password
  • hostname: hostname of the database (i.e. localhost, dw.mardukas.com, ec2-54-191-289-254.us-west-2.compute.amazonaws.com)
  • port: port the database is running on (i.e. 5432)
  • dbname: name of the database (i.e. hanksdb)
  • filename: path to sqlite database (i.e. baseball-archive-2012.sqlite, employees.db)
  • dbtype: type of database you're connecting to (postgres, mysql, sqlite, redshift)
  • profile: name of the profile you want to use to connect. using this negates the need to specify any other arguments
  • exclude_system_tables: whether or not to load schema information for internal tables. for example, postgres has a bunch of tables prefixed with pg_ that you probably don't actually care about. on the other had if you're administrating a database, you might want to query these tables
  • limit: default number of records to return in a query. This is used by the DB.query method. You can override it by adding limit={X} to the query method, or by passing an argument to DB(). None indicates that there will be no limit (That's right, you'll be limitless. Bradley Cooper style.)
>>> from db import DB
>>> db = DB(username="greg", password="secret", hostname="localhost",
            dbtype="postgres")

Saving a profile

>>> from db import DB
>>> db = DB(username="greg", password="secret", hostname="localhost",
            dbtype="postgres")
>>> db.save_credentials() # this will save to "default"
>>> db.save_credentials(profile="local_pg")

Connecting from a profile

>>> from db import DB
>>> db = DB() # this loads "default" profile
>>> db = DB(profile="local_pg")

List your profiles

>>> from db import list_profiles
>>> list_profiles()
{'demo': {u'dbname': None,
  u'dbtype': u'sqlite',
  u'filename': u'/Users/glamp/repos/yhat/opensource/db.py/db/data/chinook.sqlite',
  u'hostname': u'localhost',
  u'password': None,
  u'port': 5432,
  u'username': None},
 'muppets': {u'dbname': u'muppetdb',
  u'dbtype': u'postgres',
  u'filename': None,
  u'hostname': u'muppets.yhathq.com',
  u'password': None,
  u'port': 5432,
  u'username': u'kermit'}}

Remove a profile

>>> remove_profile('demo')

Executing Queries

From a string

>>> df1 = db.query("select * from Artist;")
>>> df2 = db.query("select * from Album;")

From a file

>>> db.query_from_file("myscript.sql")
>>> df = db.query_from_file("myscript.sql")

Searching for Tables and Columns

Tables

>>> db.find_table("A*")
+--------+--------------------------+
| Table  | Columns                  |
+--------+--------------------------+
| Album  | AlbumId, Title, ArtistId |
| Artist | ArtistId, Name           |
+--------+--------------------------+
>>> results = db.find_table("tmp*") # returns all tables prefixed w/ tmp
>>> results = db.find_table("prod_*") # returns all tables prefixed w/ prod_
>>> results = db.find_table("*Invoice*") # returns all tables containing trans
>>> results = db.find_table("*") # returns everything

Columns

>>> db.find_column("Name") # returns all columns named "Name"
+-----------+-------------+---------------+
| Table     | Column Name | Type          |
+-----------+-------------+---------------+
| Artist    |     Name    | NVARCHAR(120) |
| Genre     |     Name    | NVARCHAR(120) |
| MediaType |     Name    | NVARCHAR(120) |
| Playlist  |     Name    | NVARCHAR(120) |
| Track     |     Name    | NVARCHAR(200) |
+-----------+-------------+---------------+
>>> db.find_column("*Id") # returns all columns ending w/ Id
+---------------+---------------+---------+
| Table         |  Column Name  | Type    |
+---------------+---------------+---------+
| Album         |    AlbumId    | INTEGER |
| Album         |    ArtistId   | INTEGER |
| Artist        |    ArtistId   | INTEGER |
| Customer      |  SupportRepId | INTEGER |
| Customer      |   CustomerId  | INTEGER |
| Employee      |   EmployeeId  | INTEGER |
| Genre         |    GenreId    | INTEGER |
| Invoice       |   InvoiceId   | INTEGER |
| Invoice       |   CustomerId  | INTEGER |
| InvoiceLine   |   InvoiceId   | INTEGER |
| InvoiceLine   |    TrackId    | INTEGER |
| InvoiceLine   | InvoiceLineId | INTEGER |
| MediaType     |  MediaTypeId  | INTEGER |
| Playlist      |   PlaylistId  | INTEGER |
| PlaylistTrack |    TrackId    | INTEGER |
| PlaylistTrack |   PlaylistId  | INTEGER |
| Track         |  MediaTypeId  | INTEGER |
| Track         |    TrackId    | INTEGER |
| Track         |    AlbumId    | INTEGER |
| Track         |    GenreId    | INTEGER |
+---------------+---------------+---------+
>>> db.find_column("*Address*") # returns all columns containing Address
+----------+----------------+--------------+
| Table    |  Column Name   | Type         |
+----------+----------------+--------------+
| Customer |    Address     | NVARCHAR(70) |
| Employee |    Address     | NVARCHAR(70) |
| Invoice  | BillingAddress | NVARCHAR(70) |
+----------+----------------+--------------+
# returns all columns containing Address that are varchars
>>> db.find_column("*Address*", data_type="NVARCHAR(70)")
# returns all columns have an "e" and are NVARCHAR/INTEGERS
>>> db.find_column("*e*", data_type=["NVARCHAR(70)", "INTEGER"]) 

Tests

To run individual tests:

$ python -m unittest test_module.TestClass.test_method

To run all the tests:

$ python -m unittest discover <path_to_tests_folder> -v

Contributing

See either the TODO below or Adding a Database.

TODO

  • Switch to newer version of pandas sql api
  • Add database support
    • postgres
    • sqlite
    • redshift
    • mysql
    • mssql (going to be a little trickier since i don't have one)
  • publish examples to nbviewer
  • improve documentation and readme
  • add sample database to distrobution
  • push to Redshift
  • "joins to" for columns
    • postgres
    • sqlite
    • redshift
    • mysql
    • mssql
  • intelligent display of number/size returned in query
  • patsy formulas
  • profile w/ limit

image

Owner
yhat
yhat
SQL for Humans™

Records: SQL for Humans™ Records is a very simple, but powerful, library for making raw SQL queries to most relational databases. Just write SQL. No b

Ken Reitz 6.9k Jan 03, 2023
A SQL linter and auto-formatter for Humans

The SQL Linter for Humans SQLFluff is a dialect-flexible and configurable SQL linter. Designed with ELT applications in mind, SQLFluff also works with

SQLFluff 5.5k Jan 08, 2023
A fast unobtrusive MongoDB ODM for Python.

MongoFrames MongoFrames is a fast unobtrusive MongoDB ODM for Python designed to fit into a workflow not dictate one. Documentation is available at Mo

getme 45 Jun 01, 2022
SQL for Humans™

Records: SQL for Humans™ Records is a very simple, but powerful, library for making raw SQL queries to most relational databases. Just write SQL. No b

Kenneth Reitz 6.9k Jan 07, 2023
Pysolr — Python Solr client

pysolr pysolr is a lightweight Python client for Apache Solr. It provides an interface that queries the server and returns results based on the query.

Haystack Search 626 Dec 01, 2022
A collection of awesome sqlite tools, scripts, books, etc

Awesome Series @ Planet Open Data World (Countries, Cities, Codes, ...) • Football (Clubs, Players, Stadiums, ...) • SQLite (Tools, Books, Schemas, ..

Planet Open Data 205 Dec 16, 2022
The Database Toolkit for Python

SQLAlchemy The Python SQL Toolkit and Object Relational Mapper Introduction SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that giv

SQLAlchemy 6.5k Jan 01, 2023
pandas-gbq is a package providing an interface to the Google BigQuery API from pandas

pandas-gbq pandas-gbq is a package providing an interface to the Google BigQuery API from pandas Installation Install latest release version via conda

Google APIs 348 Jan 03, 2023
aioodbc - is a library for accessing a ODBC databases from the asyncio

aioodbc aioodbc is a Python 3.5+ module that makes it possible to access ODBC databases with asyncio. It relies on the awesome pyodbc library and pres

aio-libs 253 Dec 31, 2022
dask-sql is a distributed SQL query engine in python using Dask

dask-sql is a distributed SQL query engine in Python. It allows you to query and transform your data using a mixture of common SQL operations and Python code and also scale up the calculation easily

Nils Braun 271 Dec 30, 2022
Python client for Apache Kafka

Kafka Python client Python client for the Apache Kafka distributed stream processing system. kafka-python is designed to function much like the offici

Dana Powers 5.1k Jan 08, 2023
a small, expressive orm -- supports postgresql, mysql and sqlite

peewee Peewee is a simple and small ORM. It has few (but expressive) concepts, making it easy to learn and intuitive to use. a small, expressive ORM p

Charles Leifer 9.7k Dec 30, 2022
Database connection pooler for Python

Nimue Strange women lying in ponds distributing swords is no basis for a system of government! --Dennis, Peasant Nimue is a database connection pool f

1 Nov 09, 2021
A Telegram Bot to manage Redis Database.

A Telegram Bot to manage Redis database. Direct deploy on heroku Manual Deployment python3, git is required Clone repo git clone https://github.com/bu

Amit Sharma 4 Oct 21, 2022
Python Wrapper For sqlite3 and aiosqlite

Python Wrapper For sqlite3 and aiosqlite

6 May 30, 2022
Import entity definition document into SQLie3. Manage the entity. Also, create a "Create Table SQL file".

EntityDocumentMaker Version 1.00 After importing the entity definition (Excel file), store the data in sqlite3. エンティティ定義(Excelファイル)をインポートした後、データをsqlit

G-jon FujiYama 1 Jan 09, 2022
Dinamopy is a python helper library for dynamodb

Dinamopy is a python helper library for dynamodb. You can define your access patterns in a json file and can use dynamic method names to make operations.

Rasim Andıran 2 Jul 18, 2022
A simple wrapper to make a flat file drop in raplacement for mongodb out of TinyDB

Purpose A simple wrapper to make a drop in replacement for mongodb out of tinydb. This module is an attempt to add an interface familiar to those curr

180 Jan 01, 2023
Micro ODM for MongoDB

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

Roman 993 Jan 03, 2023
python-beryl, a Python driver for BerylDB.

python-beryl, a Python driver for BerylDB.

BerylDB 3 Nov 24, 2021