ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Overview

Linux version made-with-python Python GitHub license Open Source Love svg1

Description:

ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39 distinct protein feature extraction methods (protein descriptors) using 21 PSSM-based protein descriptors from POSSUM and 18 protein descriptors from iFeature.

POSSUM (Position-Specific Scoring matrix-based feature generator for machine learning), a versatile toolkit with an online web server that can generate 21 types of PSSM-based feature descriptors, thereby addressing a crucial need for bioinformaticians and computational biologists.

iFeature, a versatile Python-based toolkit for generating various numerical feature representation schemes for both protein and peptide sequences. iFeature is capable of calculating and extracting a comprehensive spectrum of 18 major sequence encoding schemes that encompass 53 different types of feature descriptors.

Installation

ProtFeat is a python package for feature extracting from protein sequences written in Python 3.9. ProtFeat was developed and tested in Ubuntu 20.04 LTS. Please make sure that you have Anaconda installed on your computer and run the below commands to install requirements. Dependencies are available in requirements.txt file.

conda create -n protFeat_env python=3.9
conda activate protFeat_env

How to run ProtFeat to extract the protein features

Run the following commands in the given order:

To use ProtFeat as a python package:

pip install protFeat

Then, you may use protFeat as the following in python:

import protFeat
from protFeat.feature_extracter import extract_protein_feature, usage
usage()
extract_protein_feature(protein_feature, place_protein_id, input_folder, fasta_file_name)

For example,

extract_protein_feature("AAC", 1, "input_folder", "sample")

To use ProtFeat from terminal:

Clone the Git Repository.

git clone https://github.com/gozsari/ProtFeat

In terminal or command line navigate into protFeat folder.

cd ProtFeat

Install the requirements by the running the following command.

pip install -r requirements.txt

Altenatively you may run ProtFeat from the terminal as the following:

cd src
python protFeat_command_line.py --pf protein_feature --ppid place_protein_id --inpf input_folder --fname fasta_file_name

For example,

python protFeat_command_line.py --pf AAC --ppid 1 --inpf input_folder --fname sample

Explanation of Parameters

protein_feature: {string}, (default = 'aac_pssm'): one of the protein descriptors in POSSUM and iFeature.

POSSUM descriptors:

aac_pssm, d_fpssm, smoothed_pssm, ab_pssm, pssm_composition, rpm_pssm,
s_fpssm, dpc_pssm, k_separated_bigrams_pssm, eedp, tpc, edp, rpssm,
pse_pssm, dp_pssm, pssm_ac, pssm_cc, aadp_pssm, aatp, medp , or all_POSSUM

Note: all_POSSUM extracts the features of all (21) POSSUM protein descriptors.

iFeature descriptors:

AAC, PAAC, APAAC, DPC, GAAC, CKSAAP, CKSAAGP, GDPC, Moran, Geary,
NMBroto, CTDC, CTDD, CTDT, CTriad, KSCTriad, SOCNumber, QSOrder, or all_iFeature

Note: all_iFeature extracts the features of all (18) iFeature protein descriptors.

place_protein_id: {int}, (default = 1): It indicates the place of protein id in fasta header. e.g. fasta header: >sp|O27002|....|....|...., seperate the header wrt. '|' then >sp is in the zeroth position, protein id in the first(1) position.

input_folder: {string}, (default = 'input_folder'}: it is the path to the folder that contains the fasta file.

fasta_file_name: {string}, (default ='sample'): it is the name of the fasta file exclude the '.fasta' extension.

Input file

It must be in fasta format.

Output file

The extracted feature files will be located under feature_extraction_output folder with the name: fasta_file_name_protein_feature.txt (e.g. sample_AAC.txt).

The content of the output files:

  • The output file is tab-seperated.
  • Each row corresponds to the extracted features of the protein sequence.
  • The first column of each row is UniProtKB id of the proteins, the rest is extracted features of the protein sequence.

Tables of the available protein descriptors

Table 1: Protein descriptors obtained from the POSSUM tool.

Descriptor group Protein descriptor Number of dimensions
Row Transformations AAC-PSSM
D-FPSSM
smoothed-PSMM
AB-PSSM
PSSM-composition
RPM-PSSM
S-FPSSM
20
20
1000
400
400
400
400
Column Transformation DPC-PSSM
k-seperated-bigrams-PSSM                    
tri-gram-PSSM
EEDP
TPC
400
400
8000
4000
400
Mixture of row and column transformation EDP
RPSSM
Pre-PSSM
DP-PSSM
PSSM-AC
PSSM-CC
20
110
40
240
200
3800
Combination of above descriptors AADP-PSSSM
AATP
MEDP
420
420
420

Table 2: Protein descriptors obtained from the iFeature tool.
Descriptor group Protein descriptor Number of dimensions
Amino acid composition Amino acid composition (AAC)
Composition of k-spaced amino acid pairs (CKSAAP)
Dipeptide composition (DPC)
20
2400
400
Grouped amino acid composition Grouped amino acid composition (GAAC)
Composition of k-spaced amino acid group pairs (CKSAAGP)
Grouped dipeptide composition (GDPC)
5
150
25
Autocorrelation Moran (Moran)
Geary (Geary)
Normalized Moreau-Broto (NMBroto)
240
240
240
C/T/D Composition (CTDC)
Transition (CTDT)
Distribution (CTDD)
39
39
195
Conjoint triad Conjoint triad (CTriad)
Conjoint k-spaced triad (KSCTriad)
343
343*(k+1)
Quasi-sequence-order Sequence-order-coupling number (SOCNumber)
Quasi-sequence-order descriptors (QSOrder)
60
100
Pseudo-amino acid composition Pseudo-amino acid composition (PAAC)
Amphiphilic PAAC (APAAC)
50
80

License

MIT License

ProtFeat Copyright (C) 2020 CanSyL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

You might also like...
An Open-Source Package for Neural Relation Extraction (NRE)

OpenNRE We have a DEMO website (http://opennre.thunlp.ai/). Try it out! OpenNRE is an open-source and extensible toolkit that provides a unified frame

SpikeX - SpaCy Pipes for Knowledge Extraction

SpikeX is a collection of pipes ready to be plugged in a spaCy pipeline. It aims to help in building knowledge extraction tools with almost-zero effort.

Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If you know more datasets, and want to contribute, please, notify me.

open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

中文开放信息抽取系统, open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"

GDAP The code of paper "Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"" Event Datasets Prep

Utilizing RBERT model for KLUE Relation Extraction task

RBERT for Relation Extraction task for KLUE Project Description Relation Extraction task is one of the task of Korean Language Understanding Evaluatio

Spert NLP Relation Extraction API deployed with torchserve for inference

SpERT torchserve Spert_torchserve is the Relation Extraction model (SpERT)Span-based Entity and Relation Transformer API deployed with pytorch/serve.

Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)

Realistic Few-Shot Relation Extraction This repository contains code to reproduce the results in the paper "Towards Realistic Few-Shot Relation Extrac

Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Releases(protein-feature-extraction)
  • protein-feature-extraction(Apr 12, 2022)

    ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes 39 distinct protein feature extraction methods using 21 PSSM-based protein descriptors from POSSUM and 18 protein descriptors from iFeature.

    Source code(tar.gz)
    Source code(zip)
Owner
GOKHAN OZSARI
Research and Teaching Assistant, at CEng, METU
GOKHAN OZSARI
💥 Fast State-of-the-Art Tokenizers optimized for Research and Production

Provides an implementation of today's most used tokenizers, with a focus on performance and versatility. Main features: Train new vocabularies and tok

Hugging Face 6.2k Dec 31, 2022
Maix Speech AI lib, including ASR, chat, TTS etc.

Maix-Speech 中文 | English Brief Now only support Chinese, See 中文 Build Clone code by: git clone https://github.com/sipeed/Maix-Speech Compile x86x64 c

Sipeed 267 Dec 25, 2022
Pre-training BERT masked language models with custom vocabulary

Pre-training BERT Masked Language Models (MLM) This repository contains the method to pre-train a BERT model using custom vocabulary. It was used to p

Stella Douka 14 Nov 02, 2022
This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Technique for Text Classification

The baseline code is for EDA: Easy Data Augmentation techniques for boosting performance on text classification tasks

Akbar Karimi 81 Dec 09, 2022
中文无监督SimCSE Pytorch实现

A PyTorch implementation of unsupervised SimCSE SimCSE: Simple Contrastive Learning of Sentence Embeddings 1. 用法 无监督训练 python train_unsup.py ./data/ne

99 Dec 23, 2022
✨Rubrix is a production-ready Python framework for exploring, annotating, and managing data in NLP projects.

✨A Python framework to explore, label, and monitor data for NLP projects

Recognai 1.5k Jan 02, 2023
Yuqing Xie 2 Feb 17, 2022
OpenAI CLIP text encoders for multiple languages!

Multilingual-CLIP OpenAI CLIP text encoders for any language Colab Notebook · Pre-trained Models · Report Bug Overview OpenAI recently released the pa

Fredrik Carlsson 481 Dec 30, 2022
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
A Japanese tokenizer based on recurrent neural networks

Nagisa is a python module for Japanese word segmentation/POS-tagging. It is designed to be a simple and easy-to-use tool. This tool has the following

325 Jan 05, 2023
This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe

Advent-of-cyber-2019-writeup This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe https://tryhackme.com/shivam007/badges/c

shivam danawale 5 Jul 17, 2022
Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipB

Jie Lei 雷杰 612 Jan 04, 2023
Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Zeqiu (Ellen) Wu 10 Oct 21, 2022
nlp基础任务

NLP算法 说明 此算法仓库包括文本分类、序列标注、关系抽取、文本匹配、文本相似度匹配这五个主流NLP任务,涉及到22个相关的模型算法。 框架结构 文件结构 all_models ├── Base_line │   ├── __init__.py │   ├── base_data_process.

zuxinqi 23 Sep 22, 2022
Translation for Trilium Notes. Trilium Notes 中文版.

Trilium Translation 中文说明 This repo provides a translation for the awesome Trilium Notes. Currently, I have translated Trilium Notes into Chinese. Test

743 Jan 08, 2023
Language-Agnostic SEntence Representations

LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. NEWS 2019/11/08 CCMatrix is

Facebook Research 3.2k Jan 04, 2023
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
Python library for processing Chinese text

SnowNLP: Simplified Chinese Text Processing SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob

Rui Wang 6k Jan 02, 2023
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022