ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Overview

Linux version made-with-python Python GitHub license Open Source Love svg1

Description:

ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39 distinct protein feature extraction methods (protein descriptors) using 21 PSSM-based protein descriptors from POSSUM and 18 protein descriptors from iFeature.

POSSUM (Position-Specific Scoring matrix-based feature generator for machine learning), a versatile toolkit with an online web server that can generate 21 types of PSSM-based feature descriptors, thereby addressing a crucial need for bioinformaticians and computational biologists.

iFeature, a versatile Python-based toolkit for generating various numerical feature representation schemes for both protein and peptide sequences. iFeature is capable of calculating and extracting a comprehensive spectrum of 18 major sequence encoding schemes that encompass 53 different types of feature descriptors.

Installation

ProtFeat is a python package for feature extracting from protein sequences written in Python 3.9. ProtFeat was developed and tested in Ubuntu 20.04 LTS. Please make sure that you have Anaconda installed on your computer and run the below commands to install requirements. Dependencies are available in requirements.txt file.

conda create -n protFeat_env python=3.9
conda activate protFeat_env

How to run ProtFeat to extract the protein features

Run the following commands in the given order:

To use ProtFeat as a python package:

pip install protFeat

Then, you may use protFeat as the following in python:

import protFeat
from protFeat.feature_extracter import extract_protein_feature, usage
usage()
extract_protein_feature(protein_feature, place_protein_id, input_folder, fasta_file_name)

For example,

extract_protein_feature("AAC", 1, "input_folder", "sample")

To use ProtFeat from terminal:

Clone the Git Repository.

git clone https://github.com/gozsari/ProtFeat

In terminal or command line navigate into protFeat folder.

cd ProtFeat

Install the requirements by the running the following command.

pip install -r requirements.txt

Altenatively you may run ProtFeat from the terminal as the following:

cd src
python protFeat_command_line.py --pf protein_feature --ppid place_protein_id --inpf input_folder --fname fasta_file_name

For example,

python protFeat_command_line.py --pf AAC --ppid 1 --inpf input_folder --fname sample

Explanation of Parameters

protein_feature: {string}, (default = 'aac_pssm'): one of the protein descriptors in POSSUM and iFeature.

POSSUM descriptors:

aac_pssm, d_fpssm, smoothed_pssm, ab_pssm, pssm_composition, rpm_pssm,
s_fpssm, dpc_pssm, k_separated_bigrams_pssm, eedp, tpc, edp, rpssm,
pse_pssm, dp_pssm, pssm_ac, pssm_cc, aadp_pssm, aatp, medp , or all_POSSUM

Note: all_POSSUM extracts the features of all (21) POSSUM protein descriptors.

iFeature descriptors:

AAC, PAAC, APAAC, DPC, GAAC, CKSAAP, CKSAAGP, GDPC, Moran, Geary,
NMBroto, CTDC, CTDD, CTDT, CTriad, KSCTriad, SOCNumber, QSOrder, or all_iFeature

Note: all_iFeature extracts the features of all (18) iFeature protein descriptors.

place_protein_id: {int}, (default = 1): It indicates the place of protein id in fasta header. e.g. fasta header: >sp|O27002|....|....|...., seperate the header wrt. '|' then >sp is in the zeroth position, protein id in the first(1) position.

input_folder: {string}, (default = 'input_folder'}: it is the path to the folder that contains the fasta file.

fasta_file_name: {string}, (default ='sample'): it is the name of the fasta file exclude the '.fasta' extension.

Input file

It must be in fasta format.

Output file

The extracted feature files will be located under feature_extraction_output folder with the name: fasta_file_name_protein_feature.txt (e.g. sample_AAC.txt).

The content of the output files:

  • The output file is tab-seperated.
  • Each row corresponds to the extracted features of the protein sequence.
  • The first column of each row is UniProtKB id of the proteins, the rest is extracted features of the protein sequence.

Tables of the available protein descriptors

Table 1: Protein descriptors obtained from the POSSUM tool.

Descriptor group Protein descriptor Number of dimensions
Row Transformations AAC-PSSM
D-FPSSM
smoothed-PSMM
AB-PSSM
PSSM-composition
RPM-PSSM
S-FPSSM
20
20
1000
400
400
400
400
Column Transformation DPC-PSSM
k-seperated-bigrams-PSSM                    
tri-gram-PSSM
EEDP
TPC
400
400
8000
4000
400
Mixture of row and column transformation EDP
RPSSM
Pre-PSSM
DP-PSSM
PSSM-AC
PSSM-CC
20
110
40
240
200
3800
Combination of above descriptors AADP-PSSSM
AATP
MEDP
420
420
420

Table 2: Protein descriptors obtained from the iFeature tool.
Descriptor group Protein descriptor Number of dimensions
Amino acid composition Amino acid composition (AAC)
Composition of k-spaced amino acid pairs (CKSAAP)
Dipeptide composition (DPC)
20
2400
400
Grouped amino acid composition Grouped amino acid composition (GAAC)
Composition of k-spaced amino acid group pairs (CKSAAGP)
Grouped dipeptide composition (GDPC)
5
150
25
Autocorrelation Moran (Moran)
Geary (Geary)
Normalized Moreau-Broto (NMBroto)
240
240
240
C/T/D Composition (CTDC)
Transition (CTDT)
Distribution (CTDD)
39
39
195
Conjoint triad Conjoint triad (CTriad)
Conjoint k-spaced triad (KSCTriad)
343
343*(k+1)
Quasi-sequence-order Sequence-order-coupling number (SOCNumber)
Quasi-sequence-order descriptors (QSOrder)
60
100
Pseudo-amino acid composition Pseudo-amino acid composition (PAAC)
Amphiphilic PAAC (APAAC)
50
80

License

MIT License

ProtFeat Copyright (C) 2020 CanSyL

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

You might also like...
An Open-Source Package for Neural Relation Extraction (NRE)

OpenNRE We have a DEMO website (http://opennre.thunlp.ai/). Try it out! OpenNRE is an open-source and extensible toolkit that provides a unified frame

SpikeX - SpaCy Pipes for Knowledge Extraction

SpikeX is a collection of pipes ready to be plugged in a spaCy pipeline. It aims to help in building knowledge extraction tools with almost-zero effort.

Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If you know more datasets, and want to contribute, please, notify me.

open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

中文开放信息抽取系统, open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"

GDAP The code of paper "Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"" Event Datasets Prep

Utilizing RBERT model for KLUE Relation Extraction task

RBERT for Relation Extraction task for KLUE Project Description Relation Extraction task is one of the task of Korean Language Understanding Evaluatio

Spert NLP Relation Extraction API deployed with torchserve for inference

SpERT torchserve Spert_torchserve is the Relation Extraction model (SpERT)Span-based Entity and Relation Transformer API deployed with pytorch/serve.

Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)

Realistic Few-Shot Relation Extraction This repository contains code to reproduce the results in the paper "Towards Realistic Few-Shot Relation Extrac

Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Releases(protein-feature-extraction)
  • protein-feature-extraction(Apr 12, 2022)

    ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes 39 distinct protein feature extraction methods using 21 PSSM-based protein descriptors from POSSUM and 18 protein descriptors from iFeature.

    Source code(tar.gz)
    Source code(zip)
Owner
GOKHAN OZSARI
Research and Teaching Assistant, at CEng, METU
GOKHAN OZSARI
nlp基础任务

NLP算法 说明 此算法仓库包括文本分类、序列标注、关系抽取、文本匹配、文本相似度匹配这五个主流NLP任务,涉及到22个相关的模型算法。 框架结构 文件结构 all_models ├── Base_line │   ├── __init__.py │   ├── base_data_process.

zuxinqi 23 Sep 22, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Jungil Kong 1.1k Jan 02, 2023
An open-source NLP research library, built on PyTorch.

An Apache 2.0 NLP research library, built on PyTorch, for developing state-of-the-art deep learning models on a wide variety of linguistic tasks. Quic

AI2 11.4k Jan 01, 2023
Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer

MT5_paddle Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer English | 简体中文 mT5: A Massively

2 Oct 17, 2021
Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module.

Import Subtitles for Blender VSE Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module. Supported formats by py

4 Feb 27, 2022
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision

Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Chenyang Huang 37 Jan 04, 2023
Yet Another Sequence Encoder - Encode sequences to vector of vector in python !

Yase Yet Another Sequence Encoder - encode sequences to vector of vectors in python ! Why Yase ? Yase enable you to encode any sequence which can be r

Pierre PACI 12 Aug 19, 2021
Every Google, Azure & IBM text to speech voice for free

TTS-Grabber Quick thing i made about a year ago to download any text with any tts voice, over 630 voices to choose from currently. It will split the i

16 Dec 07, 2022
Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Wake Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec Abstract استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec ب

Omid Hajipoor 1 Dec 17, 2021
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021
Original implementation of the pooling method introduced in "Speaker embeddings by modeling channel-wise correlations"

Speaker-Embeddings-Correlation-Pooling This is the original implementation of the pooling method introduced in "Speaker embeddings by modeling channel

Themos Stafylakis 10 Apr 30, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 03, 2023
A fast and lightweight python-based CTC beam search decoder for speech recognition.

pyctcdecode A fast and feature-rich CTC beam search decoder for speech recognition written in Python, providing n-gram (kenlm) language model support

Kensho 315 Dec 21, 2022
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Kinshuk Dua 171 Nov 21, 2022
A Python 3.6+ package to run .many files, where many programs written in many languages may exist in one file.

RunMany Intro | Installation | VSCode Extension | Usage | Syntax | Settings | About A tool to run many programs written in many languages from one fil

6 May 22, 2022
Japanese Long-Unit-Word Tokenizer with RemBertTokenizerFast of Transformers

Japanese-LUW-Tokenizer Japanese Long-Unit-Word (国語研長単位) Tokenizer for Transformers based on 青空文庫 Basic Usage from transformers import RemBertToken

Koichi Yasuoka 3 Dec 22, 2021
Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

hezw.tkcw 20 Dec 12, 2022
🤕 spelling exceptions builder for lazy people

🤕 spelling exceptions builder for lazy people

Vlad Bokov 3 May 12, 2022
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. Flair is: A powerful NLP library. Flair allo

flair 12.3k Jan 02, 2023