German Text-To-Speech Engine using Tacotron and Griffin-Lim

Related tags

Text Data & NLPjotts
Overview

jotts

JoTTS is a German text-to-speech engine using tacotron and griffin-lim. The synthesizer model has been trained on my voice using Tacotron1. Due to real time usage I decided not to include a vocoder and use griffin-lim instead which results in a more robotic voice but is much faster.

API

  • First create an instance of JoTTS. The initializer takes force_model_download as an optional parameter in case that the last download of the synthesizer failed and the model cannot be applied.

  • Call speak with a text parameter that contains the text to speak out loud. The second parameter can be set to True, to wait until speaking is done.

  • Use text2wav to create a wav file instead of speaking the text.

Example usage

from jotts import JoTTS
jotts = JoTTS()
jotts.speak("Das Wetter heute ist fantastisch.", True)
jotts.text2wav("Es war aber auch schon mal besser!")

Todo

  • Add an option to change the default audio device to speak the text
  • Add a parameter to select other models but the default model
  • Add threading or multi processing to allow speaking without blocking
  • Add a vocoder instead of griffin-lim to improve audio output.

Training a model for your own voice

Training a synthesizer model is easy - if you know how to do it. I created a course on udemy to show you how it is done. Don't buy the tutorial for the full price, there is a discout every month :-)

https://www.udemy.com/course/voice-cloning/

If you neither have the backgroud or the resources or if you are just lazy or too rich, contact me for contract work. Cloning a voice normally needs ~15 Minutes of clean audio from the voice you want to clone.

Disclaimer

I hope that my (and any other person's) voice will be used only for legal and ethical purposes. Please do not get into mischief with it.

Comments
  • SSL: CERTIFICATE_VERIFY_FAILED

    SSL: CERTIFICATE_VERIFY_FAILED

    my code is

    from jotts import JoTTS
    jotts = JoTTS()
    jotts.speak("Das Wetter heute ist fantastisch.", True)
    jotts.textToWav("Es war aber auch schon mal besser!")
    

    and I receive this :

    2022-11-01 09:39:57.536 | DEBUG    | jotts.jotts:__init__:66 - Initializing JoTTS...
    2022-11-01 09:39:57.537 | DEBUG    | jotts.jotts:__prepare_model__:50 - There is no tts model yet, downloading...
    2022-11-01 09:39:57.537 | DEBUG    | jotts.jotts:__prepare_model__:60 - Download file: https://github.com/padmalcom/jotts/releases/download/v0.1/v0.1.pt
    v0.1.pt: 0.00B [00:00, ?B/s]
    
    Traceback (most recent call last):
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/urllib/request.py", line 1317, in do_open
        encode_chunked=req.has_header('Transfer-encoding'))
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/http/client.py", line 1229, in request
        self._send_request(method, url, body, headers, encode_chunked)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/http/client.py", line 1275, in _send_request
        self.endheaders(body, encode_chunked=encode_chunked)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/http/client.py", line 1224, in endheaders
        self._send_output(message_body, encode_chunked=encode_chunked)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/http/client.py", line 1016, in _send_output
        self.send(msg)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/http/client.py", line 956, in send
        self.connect()
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/http/client.py", line 1392, in connect
        server_hostname=server_hostname)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/ssl.py", line 412, in wrap_socket
        session=session
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/ssl.py", line 853, in _create
        self.do_handshake()
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/ssl.py", line 1117, in do_handshake
        self._sslobj.do_handshake()
    ssl.SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1056)
    
    During handling of the above exception, another exception occurred:
    
    Traceback (most recent call last):
      File "test.py", line 2, in <module>
        jotts = JoTTS()
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/jotts/jotts.py", line 68, in __init__
        MODEL_FILE = self.__prepare_model__(force_model_download);
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/jotts/jotts.py", line 62, in __prepare_model__
        urllib.request.urlretrieve(DOWNLOAD_URL, filename=MODEL_FILE, reporthook=t.update_to)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/urllib/request.py", line 247, in urlretrieve
        with contextlib.closing(urlopen(url, data)) as fp:
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/urllib/request.py", line 222, in urlopen
        return opener.open(url, data, timeout)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/urllib/request.py", line 525, in open
        response = self._open(req, data)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/urllib/request.py", line 543, in _open
        '_open', req)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/urllib/request.py", line 503, in _call_chain
        result = func(*args)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/urllib/request.py", line 1360, in https_open
        context=self._context, check_hostname=self._check_hostname)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/urllib/request.py", line 1319, in do_open
        raise URLError(err)
    urllib.error.URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1056)>
    

    what am I doing wrong. ? Thanks !

    opened by deladriere 3
  • Samples of jotts in combination with a modern vocoder like (MB)Melgan, HifiGAN

    Samples of jotts in combination with a modern vocoder like (MB)Melgan, HifiGAN

    I tried to drop a spectrogram sanmple as npy and feed HifiGAN but it gave me a lot of noise. I am wondering how good your results are, do you have samples with vocoders like above?

    opened by eqikkwkp25-cyber 2
  • jotts.text2wav not existing / needs jotts.textToWav

    jotts.text2wav not existing / needs jotts.textToWav

    running this example on MacOS 11.6

    from jotts import JoTTS
    
    jotts = JoTTS()
    jotts.speak("Das Wetter heute ist fantastisch.", True)
    jotts.speak("Wir sind Die Roboter.", True)
    jotts.text2wav("Es war aber auch schon mal besser!")
    

    give an error trying to generate the wav file (The speak function works really well !)

    2021-12-14 17:41:22.415 | DEBUG    | jotts.jotts:__init__:66 - Initializing JoTTS...
    2021-12-14 17:41:22.415 | DEBUG    | jotts.jotts:__init__:83 - Using CPU for inference.
    2021-12-14 17:41:22.415 | DEBUG    | jotts.jotts:__init__:85 - Loading the synthesizer...
    Synthesizer using device: cpu
    Trainable Parameters: 30.874M
    Loaded synthesizer "v0.1.pt" trained to step 79000
    
    | Generating 1/1
    [W NNPACK.cpp:79] Could not initialize NNPACK! Reason: Unsupported hardware.
    
    
    Done.
    
    | Generating 1/1
    
    
    Done.
    
    Traceback (most recent call last):
      File "test_jotts.py", line 6, in <module>
        jotts.text2wav("Es war aber auch schon mal besser!")
    AttributeError: 'JoTTS' object has no attribute 'text2wav'
    

    using jotts.textToWav works well but there is still this [W NNPACK.cpp:79] message here is the output

    2021-12-14 17:45:31.699 | DEBUG    | jotts.jotts:__init__:66 - Initializing JoTTS...
    2021-12-14 17:45:31.700 | DEBUG    | jotts.jotts:__init__:83 - Using CPU for inference.
    2021-12-14 17:45:31.700 | DEBUG    | jotts.jotts:__init__:85 - Loading the synthesizer...
    Synthesizer using device: cpu
    Trainable Parameters: 30.874M
    Loaded synthesizer "v0.1.pt" trained to step 79000
    
    | Generating 1/1
    [W NNPACK.cpp:79] Could not initialize NNPACK! Reason: Unsupported hardware.
    
    
    Done.
    
    
    | Generating 1/1
    
    
    Done.
    
    
    | Generating 1/1
    
    
    Done.
    
    opened by deladriere 2
  • can this run on a Rapsberry Pi  Zero ?

    can this run on a Rapsberry Pi Zero ?

    Sorry not an issue but I would like to have a Raspberry Pi Zero speak German without the need for an Internet connection (Amazon Polly and IBM Watson have great German voices but are paid service quite complex to install - not to mention the need for a connect and its delays) I just subscribed to your course (I understand only a bit of German) ;-) Maybe some of the heavy work can be done on a fast computer but I need the text to speech to be done on the Raspberry Pi ?

    opened by deladriere 2
  • Missing additional information in README

    Missing additional information in README

    Typo somewhere: The readme says "The synthesizer model has been trained on my voice using Tacotron1." while the releases say "v0.1 Latest Pre-trained German synthesizer model based on tacotron2."

    Can you add more hints how you trained your model(s), i.e. which base repository, data structure and how many hours of your voice you need for the current results?

    opened by eqikkwkp25-cyber 1
Releases(generic_v0.4)
Owner
padmalcom
PhD in Computer Science, interested in machine learning, game programming and robotics. Hope my projects help somewhere.
padmalcom
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
Multispeaker & Emotional TTS based on Tacotron 2 and Waveglow

This Repository contains a sample code for Tacotron 2, WaveGlow with multi-speaker, emotion embeddings together with a script for data preprocessing.

Ivan Didur 106 Jan 01, 2023
Code and data accompanying Natural Language Processing with PyTorch

Natural Language Processing with PyTorch Build Intelligent Language Applications Using Deep Learning By Delip Rao and Brian McMahan Welcome. This is a

Joostware 1.8k Jan 01, 2023
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics.

Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics. Jury offers a smooth and easy-to-use interface. It uses datasets for underlying metric computa

Open Business Software Solutions 129 Jan 06, 2023
A single model that parses Universal Dependencies across 75 languages.

A single model that parses Universal Dependencies across 75 languages. Given a sentence, jointly predicts part-of-speech tags, morphology tags, lemmas, and dependency trees.

Dan Kondratyuk 189 Nov 29, 2022
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
"Investigating the Limitations of Transformers with Simple Arithmetic Tasks", 2021

transformers-arithmetic This repository contains the code to reproduce the experiments from the paper: Nogueira, Jiang, Lin "Investigating the Limitat

Castorini 33 Nov 16, 2022
Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Wake Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec Abstract استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec ب

Omid Hajipoor 1 Dec 17, 2021
Connectionist Temporal Classification (CTC) decoding algorithms: best path, beam search, lexicon search, prefix search, and token passing. Implemented in Python.

CTC Decoding Algorithms Update 2021: installable Python package Python implementation of some common Connectionist Temporal Classification (CTC) decod

Harald Scheidl 736 Jan 03, 2023
DLO8012: Natural Language Processing & CSL804: Computational Lab - II

NATURAL-LANGUAGE-PROCESSING-AND-COMPUTATIONAL-LAB-II DLO8012: NLP & CSL804: CL-II [SEMESTER VIII] Syllabus NLP - Reference Books THE WALL MEGA SATISH

AMEY THAKUR 7 Apr 28, 2022
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023
NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

Artefact 114 Dec 15, 2022
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
scikit-learn wrappers for Python fastText.

skift scikit-learn wrappers for Python fastText. from skift import FirstColFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], colu

Shay Palachy 233 Sep 09, 2022
A python package to fine-tune transformer-based models for named entity recognition (NER).

nerblackbox A python package to fine-tune transformer-based language models for named entity recognition (NER). Resources Source Code: https://github.

Felix Stollenwerk 13 Jul 30, 2022
An official implementation for "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval"

The implementation of paper CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval. CLIP4Clip is a video-text retrieval model based

ArrowLuo 456 Jan 06, 2023
Python generation script for BitBirds

BitBirds generation script Intro This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk. Pl

286 Dec 06, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
The entmax mapping and its loss, a family of sparse softmax alternatives.

entmax This package provides a pytorch implementation of entmax and entmax losses: a sparse family of probability mappings and corresponding loss func

DeepSPIN 330 Dec 22, 2022
Practical Machine Learning with Python

Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system.

Dipanjan (DJ) Sarkar 2k Jan 08, 2023