German Text-To-Speech Engine using Tacotron and Griffin-Lim

Related tags

Text Data & NLPjotts
Overview

jotts

JoTTS is a German text-to-speech engine using tacotron and griffin-lim. The synthesizer model has been trained on my voice using Tacotron1. Due to real time usage I decided not to include a vocoder and use griffin-lim instead which results in a more robotic voice but is much faster.

API

  • First create an instance of JoTTS. The initializer takes force_model_download as an optional parameter in case that the last download of the synthesizer failed and the model cannot be applied.

  • Call speak with a text parameter that contains the text to speak out loud. The second parameter can be set to True, to wait until speaking is done.

  • Use text2wav to create a wav file instead of speaking the text.

Example usage

from jotts import JoTTS
jotts = JoTTS()
jotts.speak("Das Wetter heute ist fantastisch.", True)
jotts.text2wav("Es war aber auch schon mal besser!")

Todo

  • Add an option to change the default audio device to speak the text
  • Add a parameter to select other models but the default model
  • Add threading or multi processing to allow speaking without blocking
  • Add a vocoder instead of griffin-lim to improve audio output.

Training a model for your own voice

Training a synthesizer model is easy - if you know how to do it. I created a course on udemy to show you how it is done. Don't buy the tutorial for the full price, there is a discout every month :-)

https://www.udemy.com/course/voice-cloning/

If you neither have the backgroud or the resources or if you are just lazy or too rich, contact me for contract work. Cloning a voice normally needs ~15 Minutes of clean audio from the voice you want to clone.

Disclaimer

I hope that my (and any other person's) voice will be used only for legal and ethical purposes. Please do not get into mischief with it.

Comments
  • SSL: CERTIFICATE_VERIFY_FAILED

    SSL: CERTIFICATE_VERIFY_FAILED

    my code is

    from jotts import JoTTS
    jotts = JoTTS()
    jotts.speak("Das Wetter heute ist fantastisch.", True)
    jotts.textToWav("Es war aber auch schon mal besser!")
    

    and I receive this :

    2022-11-01 09:39:57.536 | DEBUG    | jotts.jotts:__init__:66 - Initializing JoTTS...
    2022-11-01 09:39:57.537 | DEBUG    | jotts.jotts:__prepare_model__:50 - There is no tts model yet, downloading...
    2022-11-01 09:39:57.537 | DEBUG    | jotts.jotts:__prepare_model__:60 - Download file: https://github.com/padmalcom/jotts/releases/download/v0.1/v0.1.pt
    v0.1.pt: 0.00B [00:00, ?B/s]
    
    Traceback (most recent call last):
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/urllib/request.py", line 1317, in do_open
        encode_chunked=req.has_header('Transfer-encoding'))
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/http/client.py", line 1229, in request
        self._send_request(method, url, body, headers, encode_chunked)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/http/client.py", line 1275, in _send_request
        self.endheaders(body, encode_chunked=encode_chunked)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/http/client.py", line 1224, in endheaders
        self._send_output(message_body, encode_chunked=encode_chunked)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/http/client.py", line 1016, in _send_output
        self.send(msg)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/http/client.py", line 956, in send
        self.connect()
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/http/client.py", line 1392, in connect
        server_hostname=server_hostname)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/ssl.py", line 412, in wrap_socket
        session=session
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/ssl.py", line 853, in _create
        self.do_handshake()
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/ssl.py", line 1117, in do_handshake
        self._sslobj.do_handshake()
    ssl.SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1056)
    
    During handling of the above exception, another exception occurred:
    
    Traceback (most recent call last):
      File "test.py", line 2, in <module>
        jotts = JoTTS()
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/jotts/jotts.py", line 68, in __init__
        MODEL_FILE = self.__prepare_model__(force_model_download);
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/jotts/jotts.py", line 62, in __prepare_model__
        urllib.request.urlretrieve(DOWNLOAD_URL, filename=MODEL_FILE, reporthook=t.update_to)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/urllib/request.py", line 247, in urlretrieve
        with contextlib.closing(urlopen(url, data)) as fp:
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/urllib/request.py", line 222, in urlopen
        return opener.open(url, data, timeout)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/urllib/request.py", line 525, in open
        response = self._open(req, data)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/urllib/request.py", line 543, in _open
        '_open', req)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/urllib/request.py", line 503, in _call_chain
        result = func(*args)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/urllib/request.py", line 1360, in https_open
        context=self._context, check_hostname=self._check_hostname)
      File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/urllib/request.py", line 1319, in do_open
        raise URLError(err)
    urllib.error.URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1056)>
    

    what am I doing wrong. ? Thanks !

    opened by deladriere 3
  • Samples of jotts in combination with a modern vocoder like (MB)Melgan, HifiGAN

    Samples of jotts in combination with a modern vocoder like (MB)Melgan, HifiGAN

    I tried to drop a spectrogram sanmple as npy and feed HifiGAN but it gave me a lot of noise. I am wondering how good your results are, do you have samples with vocoders like above?

    opened by eqikkwkp25-cyber 2
  • jotts.text2wav not existing / needs jotts.textToWav

    jotts.text2wav not existing / needs jotts.textToWav

    running this example on MacOS 11.6

    from jotts import JoTTS
    
    jotts = JoTTS()
    jotts.speak("Das Wetter heute ist fantastisch.", True)
    jotts.speak("Wir sind Die Roboter.", True)
    jotts.text2wav("Es war aber auch schon mal besser!")
    

    give an error trying to generate the wav file (The speak function works really well !)

    2021-12-14 17:41:22.415 | DEBUG    | jotts.jotts:__init__:66 - Initializing JoTTS...
    2021-12-14 17:41:22.415 | DEBUG    | jotts.jotts:__init__:83 - Using CPU for inference.
    2021-12-14 17:41:22.415 | DEBUG    | jotts.jotts:__init__:85 - Loading the synthesizer...
    Synthesizer using device: cpu
    Trainable Parameters: 30.874M
    Loaded synthesizer "v0.1.pt" trained to step 79000
    
    | Generating 1/1
    [W NNPACK.cpp:79] Could not initialize NNPACK! Reason: Unsupported hardware.
    
    
    Done.
    
    | Generating 1/1
    
    
    Done.
    
    Traceback (most recent call last):
      File "test_jotts.py", line 6, in <module>
        jotts.text2wav("Es war aber auch schon mal besser!")
    AttributeError: 'JoTTS' object has no attribute 'text2wav'
    

    using jotts.textToWav works well but there is still this [W NNPACK.cpp:79] message here is the output

    2021-12-14 17:45:31.699 | DEBUG    | jotts.jotts:__init__:66 - Initializing JoTTS...
    2021-12-14 17:45:31.700 | DEBUG    | jotts.jotts:__init__:83 - Using CPU for inference.
    2021-12-14 17:45:31.700 | DEBUG    | jotts.jotts:__init__:85 - Loading the synthesizer...
    Synthesizer using device: cpu
    Trainable Parameters: 30.874M
    Loaded synthesizer "v0.1.pt" trained to step 79000
    
    | Generating 1/1
    [W NNPACK.cpp:79] Could not initialize NNPACK! Reason: Unsupported hardware.
    
    
    Done.
    
    
    | Generating 1/1
    
    
    Done.
    
    
    | Generating 1/1
    
    
    Done.
    
    opened by deladriere 2
  • can this run on a Rapsberry Pi  Zero ?

    can this run on a Rapsberry Pi Zero ?

    Sorry not an issue but I would like to have a Raspberry Pi Zero speak German without the need for an Internet connection (Amazon Polly and IBM Watson have great German voices but are paid service quite complex to install - not to mention the need for a connect and its delays) I just subscribed to your course (I understand only a bit of German) ;-) Maybe some of the heavy work can be done on a fast computer but I need the text to speech to be done on the Raspberry Pi ?

    opened by deladriere 2
  • Missing additional information in README

    Missing additional information in README

    Typo somewhere: The readme says "The synthesizer model has been trained on my voice using Tacotron1." while the releases say "v0.1 Latest Pre-trained German synthesizer model based on tacotron2."

    Can you add more hints how you trained your model(s), i.e. which base repository, data structure and how many hours of your voice you need for the current results?

    opened by eqikkwkp25-cyber 1
Releases(generic_v0.4)
Owner
padmalcom
PhD in Computer Science, interested in machine learning, game programming and robotics. Hope my projects help somewhere.
padmalcom
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022
DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 03, 2023
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
Spacy-ginza-ner-webapi - Named Entity Recognition API with spaCy and GiNZA

Named Entity Recognition API with spaCy and GiNZA I wrote a blog post about this

Yuki Okuda 3 Feb 27, 2022
Model parallel transformers in JAX and Haiku

Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu

Ben Wang 4.9k Jan 04, 2023
Opal-lang - A WIP programming language based on Python

thanks to aphitorite for the beautiful logo! opal opal is a WIP transcompiled pr

3 Nov 04, 2022
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model struc

RUO 2 Feb 22, 2022
KoBERT - Korean BERT pre-trained cased (KoBERT)

KoBERT KoBERT Korean BERT pre-trained cased (KoBERT) Why'?' Training Environment Requirements How to install How to use Using with PyTorch Using with

SK T-Brain 1k Jan 02, 2023
A curated list of FOSS tools to improve the Hacker News experience

Awesome-Hackernews Hacker News is a social news website focusing on computer technologies, hacking and startups. It promotes any content likely to "gr

Bryton Lacquement 141 Dec 27, 2022
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation

The implementation of Parameter Differentiation based Multilingual Neural Machine Translation .

Qian Wang 21 Dec 17, 2022
Bpe algorithm can finetune tokenizer - Bpe algorithm can finetune tokenizer

"# bpe_algorithm_can_finetune_tokenizer" this is an implyment for https://github

张博 1 Feb 02, 2022
Words-per-minute - A terminal app written in python utilizing the curses module that tests the user's ability to type

words-per-minute A terminal app written in python utilizing the curses module th

Tanim Islam 1 Jan 14, 2022
Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021.

capbot-siic Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021. Problem Inspiration A plethora

Aryan Kargwal 19 Feb 17, 2022
a CTF web challenge about making screenshots

screenshotter (web) A CTF web challenge about making screenshots. It is inspired by a bug found in real life. The challenge was created by @LiveOverfl

219 Jan 02, 2023
Large-scale pretraining for dialogue

A State-of-the-Art Large-scale Pretrained Response Generation Model (DialoGPT) This repository contains the source code and trained model for a large-

Microsoft 1.8k Jan 07, 2023
Tool to check whether a GCP bucket is public or not.

Tool to check publicly accessible GCP bucket. Blog https://justm0rph3u5.medium.com/gcp-inspector-auditing-publicly-exposed-gcp-bucket-ac6cad55618c Wha

DIVYANSHU SHUKLA 7 Nov 24, 2022
☀️ Measuring the accuracy of BBC weather forecasts in Honolulu, USA

Accuracy of BBC Weather forecasts for Honolulu This repository records the forecasts made by BBC Weather for the city of Honolulu, USA. Essentially, t

Max Halford 12 Oct 15, 2022
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization 📥 Download Datasets 📥 Download Trained Models INTRODUCTION TH2ZH (

Nakhun Chumpolsathien 5 Jan 03, 2022
The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Fake News Detection Overview The proliferation of disinformation across social media has led the application of deep learning techniques to detect fak

Kushal Shingote 1 Feb 08, 2022