Official implementation of VaxNeRF (Voxel-Accelearated NeRF).

Related tags

Deep LearningVaxNeRF
Overview

VaxNeRF

Paper | Google Colab Open In Colab

This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).
VaxNeRF provides very fast training and slightly higher scores compared to original (Jax)NeRF!!

Updates!

Visual Hull (1sec)
NeRF (10min)
VaxNeRF (10min)
Vax-MipNeRF (10min)


(The results of Vax-MipNeRF are also included in this figure.)

Installation

Please see the README of JaxNeRF.

The jax and jaxlib versions that we have tested are as follows.

jax                     0.2.24
jaxlib                  0.1.69+cuda111
jax                     0.2.17
jaxlib                  0.1.65+cuda110

Quick start

Training

# make a bounding volume voxel using Visual Hull
python visualhull.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil7/lego \
    --dilation 7 \
    --thresh 1. \
    --alpha_bkgd

# train VaxNeRF
python train.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil7/lego \
    --train_dir logs/lego_vax_c800 \
    --num_coarse_samples 800 \
    --render_every 2500

Evaluation

python eval.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil7/lego \
    --train_dir logs/lego_vax_c800 \
    --num_coarse_samples 800

Try other NeRFs

Original NeRF

python train.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --train_dir logs/lego_c64f128 \
    --num_coarse_samples 64 \
    --num_fine_samples 128 \
    --render_every 2500

VaxNeRF with hierarchical sampling

# small `num_xx_samples` needs more dilated voxel (see our paper)
python visualhull.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil47/lego \
    --dilation 47 \
    --thresh 1. \
    --alpha_bkgd

# train VaxNeRF
python train.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil47/lego \
    --train_dir logs/lego_vax_c64f128 \
    --num_coarse_samples 64 \
    --num_fine_samples 128 \
    --render_every 2500

Option details

Visual Hull

  • Use --dilation 11 / --dilation 51 for NSVF-Synthetic dataset for training VaxNeRF without / with hierarchical sampling.
  • The following options were used
  • Since the Lifestyle, Spaceship, Steamtrain scenes (included in the NSVF dataset) do not have alpha channel, please use following options and remove --alpha_bkgd option.
    • Lifestyle: --thresh 0.95, Spaceship: --thresh 0.9, Steamtrain: --thresh 0.95

NeRFs

  • We used --small_lr_at_first option for original NeRF training on the Robot and Spaceship scenes to avoid local minimum.

Code modification from JaxNeRF

  • You can see the main difference between (Jax)NeRF (jaxnerf branch) and VaxNeRF (vaxnerf branch) here
  • The main branch (derived from the vaxnerf branch) contains the following features.
    • Support for original NeRF
    • Support for VaxNeRF with hierarchical sampling
    • Support for the NSVF-Synthetic dataset
    • Visualization of number of sampling points evaluated by MLP (VaxNeRF)
    • Automatic choice of the number of sampling points to be evaluated (VaxNeRF)

Citation

Please use the following bibtex for citations:

@article{kondo2021vaxnerf,
  title={VaxNeRF: Revisiting the Classic for Voxel-Accelerated Neural Radiance Field},
  author={Kondo, Naruya and Ikeda, Yuya and Tagliasacchi, Andrea and Matsuo, Yutaka and Ochiai, Yoichi and Gu, Shixiang Shane},
  journal={arXiv preprint arXiv:2111.13112},
  year={2021}
}

and also cite the original NeRF paper and JaxNeRF implementation:

@inproceedings{mildenhall2020nerf,
  title={NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis},
  author={Ben Mildenhall and Pratul P. Srinivasan and Matthew Tancik and Jonathan T. Barron and Ravi Ramamoorthi and Ren Ng},
  year={2020},
  booktitle={ECCV},
}

@software{jaxnerf2020github,
  author = {Boyang Deng and Jonathan T. Barron and Pratul P. Srinivasan},
  title = {{JaxNeRF}: an efficient {JAX} implementation of {NeRF}},
  url = {https://github.com/google-research/google-research/tree/master/jaxnerf},
  version = {0.0},
  year = {2020},
}

Acknowledgement

We'd like to express deep thanks to the inventors of NeRF and JaxNeRF.

Have a good VaxNeRF'ed life!

Owner
naruya
May the "Metaverse" be a warm-hearted world. / first-year master's student
naruya
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling This is the official implementation for "Frustratingly Simple Pretraining Al

Atsuki Yamaguchi 31 Nov 18, 2022
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022