Official implementation of VaxNeRF (Voxel-Accelearated NeRF).

Related tags

Deep LearningVaxNeRF
Overview

VaxNeRF

Paper | Google Colab Open In Colab

This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).
VaxNeRF provides very fast training and slightly higher scores compared to original (Jax)NeRF!!

Updates!

Visual Hull (1sec)
NeRF (10min)
VaxNeRF (10min)
Vax-MipNeRF (10min)


(The results of Vax-MipNeRF are also included in this figure.)

Installation

Please see the README of JaxNeRF.

The jax and jaxlib versions that we have tested are as follows.

jax                     0.2.24
jaxlib                  0.1.69+cuda111
jax                     0.2.17
jaxlib                  0.1.65+cuda110

Quick start

Training

# make a bounding volume voxel using Visual Hull
python visualhull.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil7/lego \
    --dilation 7 \
    --thresh 1. \
    --alpha_bkgd

# train VaxNeRF
python train.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil7/lego \
    --train_dir logs/lego_vax_c800 \
    --num_coarse_samples 800 \
    --render_every 2500

Evaluation

python eval.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil7/lego \
    --train_dir logs/lego_vax_c800 \
    --num_coarse_samples 800

Try other NeRFs

Original NeRF

python train.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --train_dir logs/lego_c64f128 \
    --num_coarse_samples 64 \
    --num_fine_samples 128 \
    --render_every 2500

VaxNeRF with hierarchical sampling

# small `num_xx_samples` needs more dilated voxel (see our paper)
python visualhull.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil47/lego \
    --dilation 47 \
    --thresh 1. \
    --alpha_bkgd

# train VaxNeRF
python train.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil47/lego \
    --train_dir logs/lego_vax_c64f128 \
    --num_coarse_samples 64 \
    --num_fine_samples 128 \
    --render_every 2500

Option details

Visual Hull

  • Use --dilation 11 / --dilation 51 for NSVF-Synthetic dataset for training VaxNeRF without / with hierarchical sampling.
  • The following options were used
  • Since the Lifestyle, Spaceship, Steamtrain scenes (included in the NSVF dataset) do not have alpha channel, please use following options and remove --alpha_bkgd option.
    • Lifestyle: --thresh 0.95, Spaceship: --thresh 0.9, Steamtrain: --thresh 0.95

NeRFs

  • We used --small_lr_at_first option for original NeRF training on the Robot and Spaceship scenes to avoid local minimum.

Code modification from JaxNeRF

  • You can see the main difference between (Jax)NeRF (jaxnerf branch) and VaxNeRF (vaxnerf branch) here
  • The main branch (derived from the vaxnerf branch) contains the following features.
    • Support for original NeRF
    • Support for VaxNeRF with hierarchical sampling
    • Support for the NSVF-Synthetic dataset
    • Visualization of number of sampling points evaluated by MLP (VaxNeRF)
    • Automatic choice of the number of sampling points to be evaluated (VaxNeRF)

Citation

Please use the following bibtex for citations:

@article{kondo2021vaxnerf,
  title={VaxNeRF: Revisiting the Classic for Voxel-Accelerated Neural Radiance Field},
  author={Kondo, Naruya and Ikeda, Yuya and Tagliasacchi, Andrea and Matsuo, Yutaka and Ochiai, Yoichi and Gu, Shixiang Shane},
  journal={arXiv preprint arXiv:2111.13112},
  year={2021}
}

and also cite the original NeRF paper and JaxNeRF implementation:

@inproceedings{mildenhall2020nerf,
  title={NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis},
  author={Ben Mildenhall and Pratul P. Srinivasan and Matthew Tancik and Jonathan T. Barron and Ravi Ramamoorthi and Ren Ng},
  year={2020},
  booktitle={ECCV},
}

@software{jaxnerf2020github,
  author = {Boyang Deng and Jonathan T. Barron and Pratul P. Srinivasan},
  title = {{JaxNeRF}: an efficient {JAX} implementation of {NeRF}},
  url = {https://github.com/google-research/google-research/tree/master/jaxnerf},
  version = {0.0},
  year = {2020},
}

Acknowledgement

We'd like to express deep thanks to the inventors of NeRF and JaxNeRF.

Have a good VaxNeRF'ed life!

Owner
naruya
May the "Metaverse" be a warm-hearted world. / first-year master's student
naruya
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
Platform-agnostic AI Framework 🔥

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

David Futschik 112 Jan 04, 2023
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022