An adaptable Snakemake workflow which uses GATKs best practice recommendations to perform germline mutation calling starting with BAM files

Overview

Germline Mutation Calling

This Snakemake workflow follows the GATK best-practice recommandations to call small germline variants.

The pipeline requires as inputs aligned BAM files (e.g. with BWA) where the duplicates are already marked (e.g. with Picard or sambamba). It then performed Base Quality Score Recalibration and joint genotyping of multiple samples, which is automatically parallized over user defined intervals (for examples see intervals.txt) and chromosomes.

Filtering is performed using GATKs state-of-the-art Variant Quality Score Recalibration

At the end of the worklow, the Variant Effect Predictor is used to annotate the identified germline mutations.

A high level overview of the performed steps can be seen below:

DAG

As seen by the execution graph, an arbitrary number of samples/BAM files can be processed in parallel up to the joint variant calling.

Installation

Required tools:

The majority of the listed tools can be quite easily installed with conda which is recommanded.

Usage

First, modify the config_wgs.yaml and resources.yaml files. Both files contain detailed description what is expected. The config_wgs.yaml also contains links to some reference resources. Be careful, they are all specific for the GRCh37/hg19/b37 genome assembly.

After setting up all the config files and installing all tools, you can simply run:

snakemake --latency-wait 300 -j 5 --cluster "sbatch --mem={resources.mem_mb} --time {resources.runtime_min} --cpus-per-task {threads} --job-name={rule}.%j --output snakemake_cluster_submit_log/{rule}.%j.out --mail-type=FAIL"

This assumes that the cluster you are using is running SLURM. If this is not the case, you have to adjust the command after --cluster. The log information of each job will be safed in the snakemake_cluster_submit_log directory. This directory will not be created automatically.

-j specifies the number of jobs/rules should be submitted in parallel.

I recommand running this command in a detached session with tmux or screen.

Output

Below is the output of the tree command, after the workflow has finished for one patient H005-00ML. Usually you would include many patients simultaneously (>50). This is just to illustrate the created output files.

.
├── cohort
│ ├── benchmark
│ │ ├── ApplyVQSR_indel.txt
│ │ ├── ApplyVQSR_snp.txt
│ │ ├── CombineGVCFs.txt
│ │ ├── GenotypeGVCFs.txt
│ │ ├── MergeCohortVCFs.txt
│ │ ├── SelectVariants.txt
│ │ ├── VEP.txt
│ │ ├── VQSR_indel.txt
│ │ └── VQSR_snp.txt
│ ├── cohort.recalibrated.pass.vep.vcf.gz
│ ├── cohort.recalibrated.pass.vep.vcf.gz_summary.html
│ ├── cohort.recalibrated.vcf.gz
│ ├── cohort.recalibrated.vcf.gz.tbi
│ └── logs
│     ├── ApplyVQSR_indel.out
│     ├── ApplyVQSR_snp.out
│     ├── CombineGVCFs
│     ├── CombineGVCFs.1.out
│     ├── CombineGVCFs.2.out
│     ├── ...
│     ├── ...
│     ├── CombineGVCFs.Y.out
│     ├── GenotypeGVCFs.1.out
│     ├── GenotypeGVCFs.2.out
│     ├── ...
│     ├── ...
│     ├── GenotypeGVCFs.Y.out
│     ├── MakeSitesOnly.out
│     ├── MergeCohortVCFs.out
│     ├── SelectVariants.err
│     ├── VEP.out
│     ├── VQSR_indel.out
│     └── VQSR_snp.out
├── config
│ ├── config_wgs.yaml
│ └── resources.yaml
├── H005-00ML
│ ├── benchmark
│ │ ├── ApplyBQSR.txt
│ │ ├── BaseRecalibrator.txt
│ │ ├── GatherBQSRReports.txt
│ │ ├── GatherRecalBamFiles.txt
│ │ ├── HaplotypeCaller.txt
│ │ ├── IndexBam.txt
│ │ ├── MergeHaplotypeCaller.txt
│ │ └── SortBam.txt
│ ├── H005-00ML.germline.merged.g.vcf.gz
│ ├── H005-00ML.germline.merged.g.vcf.gz.tbi
│ └── logs
│     ├── ApplyBQSR
│     ├── ApplyBQSR.0000-scattered.interval_list.out
│     ├── ApplyBQSR.0001-scattered.interval_list.out
│     ├── ...
│     ├── ...
│     ├── ApplyBQSR.0049-scattered.interval_list.out
│     ├── BaseRecalibrator
│     ├── BaseRecalibrator.0000-scattered.interval_list.out
│     ├── BaseRecalibrator.0001-scattered.interval_list.out
│     ├── ...
│     ├── ...
│     ├── BaseRecalibrator.0049-scattered.interval_list.out
│     ├── GatherBQSRReports.out
│     ├── GatherRecalBamFiles.out
│     ├── HaplotypeCaller
│     ├── HaplotypeCaller.0000-scattered.interval_list.out
│     ├── HaplotypeCaller.0001-scattered.interval_list.out
│     ├── ...
│     ├── ...
│     ├── HaplotypeCaller.0049-scattered.interval_list.out
│     ├── IndexBam.out
│     ├── MergeHaplotypeCaller.out
│     └── SortBam.out
├── rules
│ ├── BaseQualityScoreRecalibration.smk
│ ├── JointGenotyping.smk
│ ├── VEP.smk
│ └── VQSR.smk
├── Snakefile
├── snakemake_cluster_submit_log
│ ├── ApplyBQSR.24720887.out
│ ├── ApplyVQSR_snp.24777265.out
│ ├── BaseRecalibrator.24710227.out
│ ├── CombineGVCFs.24772984.out
│ ├── GatherBQSRReports.24715726.out
│ ├── GatherRecalBamFiles.24722478.out
│ ├── GenotypeGVCFs.24773026.out
│ ├── HaplotypeCaller.24769848.out
│ ├── IndexBam.24768728.out
│ ├── MergeCohortVCFs.24776018.out
│ ├── MergeHaplotypeCaller.24772183.out
│ ├── SelectVariants.24777733.out
│ ├── SortBam.24768066.out
│ ├── VEP.24777739.out
│ ├── VQSR_indel.24776035.out
│ └── VQSR_snp.24776036.out

For each analyzed patient, a seperate directory gets created. Along with the patient specific gvcf file, this directory contains log files for all the processing steps that were performed for that patient (log directory) as well as benchmarks for each rule, e.g. how long the step took or how much CPU/RAM was used (benchmark directory).

The cohort directory contains the multi-sample VCF file, which gets created after performing the joint variant calling. The cohort.recalibrated.vcf.gz is the product of GATKs Variant Quality Score Recalibration. The cohort.recalibrated.pass.vep.vcf.gz is the filtered and VEP annotated version of cohort.recalibrated.vcf.gz (only variants with PASS are kept).

For most applications, the cohort.recalibrated.pass.vep.vcf.gz file, is the file you want to continue working with.

Sky attention heatmap of submissions to astrometry.net

astroheat Installation Requires Python 3.6+, Tested with Python 3.9.5 Install library dependencies pip install -r requirements.txt The program require

4 Jun 20, 2022
The official colors of the FAU as matplotlib/seaborn colormaps

FAU - Colors The official colors of Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) as matplotlib / seaborn colormaps. We support the old colo

Machine Learning and Data Analytics Lab FAU 9 Sep 05, 2022
Machine learning beginner to Kaggle competitor in 30 days. Non-coders welcome. The program starts Monday, August 2, and lasts four weeks. It's designed for people who want to learn machine learning.

30-Days-of-ML-Kaggle 🔥 About the Hands On Program 💻 Machine learning beginner → Kaggle competitor in 30 days. Non-coders welcome The program starts

Roja Achary 145 Jan 01, 2023
Fastest Gephi's ForceAtlas2 graph layout algorithm implemented for Python and NetworkX

ForceAtlas2 for Python A port of Gephi's Force Atlas 2 layout algorithm to Python 2 and Python 3 (with a wrapper for NetworkX and igraph). This is the

Bhargav Chippada 227 Jan 05, 2023
Visualise top-rated GitHub repositories in a barchart by keyword

This python script was written for simple purpose -- to visualise top-rated GitHub repositories in a barchart by keyword. Script generates html-page with barchart and information about repository own

Cur1iosity 2 Feb 07, 2022
Simple addon for snapping active object to mesh ground

Snap to Ground Simple addon for snapping active object to mesh ground How to install: install the Python file as an addon use shortcut "D" in 3D view

Iyad Ahmed 12 Nov 07, 2022
Matplotlib JOTA style for making figures

Matplotlib JOTA style for making figures This repo has Matplotlib JOTA style to format plots and figures for publications and presentation.

JOTA JORNALISMO 2 May 05, 2022
Smarthome Dashboard with Grafana & InfluxDB

Smarthome Dashboard with Grafana & InfluxDB This is a complete overhaul of my Raspberry Dashboard done with Flask. I switched from sqlite to InfluxDB

6 Oct 20, 2022
Histogramming for analysis powered by boost-histogram

Hist Hist is an analyst-friendly front-end for boost-histogram, designed for Python 3.7+ (3.6 users get version 2.4). See what's new. Installation You

Scikit-HEP Project 97 Dec 25, 2022
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 04, 2023
A package for plotting maps in R with ggplot2

Attention! Google has recently changed its API requirements, and ggmap users are now required to register with Google. From a user’s perspective, ther

David Kahle 719 Jan 04, 2023
An XLSX spreadsheet renderer for Django REST Framework.

drf-renderer-xlsx provides an XLSX renderer for Django REST Framework. It uses OpenPyXL to create the spreadsheet and returns the data.

The Wharton School 166 Dec 01, 2022
Open-source demos hosted on Dash Gallery

Dash Sample Apps This repository hosts the code for over 100 open-source Dash apps written in Python or R. They can serve as a starting point for your

Plotly 2.7k Jan 07, 2023
Python script to generate a visualization of various sorting algorithms, image or video.

sorting_algo_visualizer Python script to generate a visualization of various sorting algorithms, image or video.

146 Nov 12, 2022
Datapane is the easiest way to create data science reports from Python.

Datapane Teams | Documentation | API Docs | Changelog | Twitter | Blog Share interactive plots and data in 3 lines of Python. Datapane is a Python lib

Datapane 744 Jan 06, 2023
Scientific measurement library for instruments, experiments, and live-plotting

PyMeasure scientific package PyMeasure makes scientific measurements easy to set up and run. The package contains a repository of instrument classes a

PyMeasure 445 Jan 04, 2023
Here I plotted data for the average test scores across schools and class sizes across school districts.

HW_02 Here I plotted data for the average test scores across schools and class sizes across school districts. Average Test Score by Race This graph re

7 Oct 27, 2021
Learning Convolutional Neural Networks with Interactive Visualization.

CNN Explainer An interactive visualization system designed to help non-experts learn about Convolutional Neural Networks (CNNs) For more information,

Polo Club of Data Science 6.3k Jan 01, 2023
eoplatform is a Python package that aims to simplify Remote Sensing Earth Observation by providing actionable information on a wide swath of RS platforms and provide a simple API for downloading and visualizing RS imagery

An Earth Observation Platform Earth Observation made easy. Report Bug | Request Feature About eoplatform is a Python package that aims to simplify Rem

Matthew Tralka 4 Aug 11, 2022
Automatically Visualize any dataset, any size with a single line of code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

AutoViz Automatically Visualize any dataset, any size with a single line of code. AutoViz performs automatic visualization of any dataset with one lin

AutoViz and Auto_ViML 1k Jan 02, 2023