ERQA - Edge Restoration Quality Assessment

Related tags

Computer VisionERQA
Overview

ERQA - Edge Restoration Quality Assessment

ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR, deblurring, denoising, etc) are restoring real details.

It is part of MSU Video Super Resolution Benchmark project.

Quick start

Run pip install erqa and run it from command line or directly from Python code.

Command line

python -m erqa /path/to/target.png /path/to/gt.png

Python code

import erqa
import cv2

# Target and gt should be uint8 arrays of equal shape (H, W, 3) in BGR format
target = cv2.imread('/path/to/target.png')
gt = cv2.imread('/path/to/gt.png')

metric = erqa.ERQA()
v = metric(target, gt)

Description

The ERQA metric analyzes how details were reconstructed in an image compared to ground-truth.

  • ERQA = 1.0 means perfect restoration
  • ERQA = 0.0 means worst restoration

Visualization of the metric shows underlying mask showing where image is distorted.

  • Blue means there is a missing detail (False Negative)
  • Red means there is a misplaced detail (False Positive)
  • White means perfect details restoration (True Positive)
  • Black means perfect background restoration (True Negative)

Local setup

You can get source code up and running using following commands:

git clone https://github.com/msu-video-group/erqa
cd erqa
pip install -r requirements.txt

Cite us

Soon

Owner
MSU Video Group
Lomonosov Moscow State University Graphics and Media Lab Video Group
MSU Video Group
Tracking the latest progress in Scene Text Detection and Recognition: Must-read papers well organized

SceneTextPapers Tracking the latest progress in Scene Text Detection and Recognition: must-read papers well organized Information about this repositor

Shangbang Long 763 Jan 01, 2023
A python programusing Tkinter graphics library to randomize questions and answers contained in text files

RaffleOfQuestions Um programa simples em python, utilizando a biblioteca gráfica Tkinter para randomizar perguntas e respostas contidas em arquivos de

Gabriel Ferreira Rodrigues 1 Dec 16, 2021
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition Released the code of RepMLP together with an example o

260 Jan 03, 2023
Can We Find Neurons that Cause Unrealistic Images in Deep Generative Networks?

Can We Find Neurons that Cause Unrealistic Images in Deep Generative Networks? Artifact Detection/Correction - Offcial PyTorch Implementation This rep

CHOI HWAN IL 23 Dec 20, 2022
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

Jia Research Lab 182 Dec 29, 2022
Convert Text-to Handwriting Using Python

Convert Text-to Handwriting Using Python Description In this project we'll use python library that's "pywhatkit" for converting text to handwriting. t

8 Nov 19, 2022
【Auto】原神⭐钓鱼辅助工具 | 自动收竿、校准游标 | ✨您只需要抛出鱼竿,我们会帮你完成一切✨

原神钓鱼辅助工具 ✨ 作者正在努力重构代码中……会尽快带给大家一个更完美的脚本 ✨ 「您只需抛出鱼竿,然后我们会帮您搞定一切」 如果你觉得这个脚本好用,请点一个 Star ⭐ ,你的 Star 就是作者更新最大的动力 点击这里 查看演示视频 ✨ 欢迎大家在 Issues 中分享自己的配置文件 ✨ ✨

261 Jan 02, 2023
MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI.

MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with one

Project MONAI 344 Dec 23, 2022
🔎 Like Chardet. 🚀 Package for encoding & language detection. Charset detection.

Charset Detection, for Everyone 👋 The Real First Universal Charset Detector A library that helps you read text from an unknown charset encoding. Moti

TAHRI Ahmed R. 332 Dec 31, 2022
[ICCV, 2021] Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks

Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks This is an official PyTorch code repository of the paper "Cloud Transformers:

Visual Understanding Lab @ Samsung AI Center Moscow 27 Dec 15, 2022
Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition:

Multi-Type-TD-TSR Check it out on Source Code of our Paper: Multi-Type-TD-TSR Extracting Tables from Document Images using a Multi-stage Pipeline for

Pascal Fischer 178 Dec 27, 2022
TextBoxes++: A Single-Shot Oriented Scene Text Detector

TextBoxes++: A Single-Shot Oriented Scene Text Detector Introduction This is an application for scene text detection (TextBoxes++) and recognition (CR

Minghui Liao 930 Jan 04, 2023
SemTorch

SemTorch This repository contains different deep learning architectures definitions that can be applied to image segmentation. All the architectures a

David Lacalle Castillo 154 Dec 07, 2022
Color Picker and Color Detection tool for METR4202

METR4202 Color Detection Help This is sample code that can be used for the METR4202 project demo. There are two files provided, both running on Python

Miguel Valencia 1 Oct 23, 2021
This repo contains a script that allows us to find range of colors in images using openCV, and then convert them into geo vectors.

Vectorizing color range This repo contains a script that allows us to find range of colors in images using openCV, and then convert them into geo vect

Development Seed 9 Jul 27, 2022
Handwritten Text Recognition (HTR) using TensorFlow 2.x

Handwritten Text Recognition (HTR) system implemented using TensorFlow 2.x and trained on the Bentham/IAM/Rimes/Saint Gall/Washington offline HTR data

Arthur Flôr 160 Dec 21, 2022
Extract tables from scanned image PDFs using Optical Character Recognition.

ocr-table This project aims to extract tables from scanned image PDFs using Optical Character Recognition. Install Requirements Tesseract OCR sudo apt

Abhijeet Singh 209 Dec 06, 2022
keras复现场景文本检测网络CPTN: 《Detecting Text in Natural Image with Connectionist Text Proposal Network》;欢迎试用,关注,并反馈问题...

keras-ctpn [TOC] 说明 预测 训练 例子 4.1 ICDAR2015 4.1.1 带侧边细化 4.1.2 不带带侧边细化 4.1.3 做数据增广-水平翻转 4.2 ICDAR2017 4.3 其它数据集 toDoList 总结 说明 本工程是keras实现的CPTN: Detecti

mick.yi 107 Jan 09, 2023
Corner-based Region Proposal Network

Corner-based Region Proposal Network CRPN is a two-stage detection framework for multi-oriented scene text. It employs corners to estimate the possibl

xhzdeng 140 Nov 04, 2022
Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Daniel Jarrett 26 Jun 17, 2021