Workshop for student hackathons focused on IoT dev

Overview

Scenario: The Mutt Matcher (IoT version)

According to the World Health Organization there are more than 200 million stray dogs worldwide. The American Society for the Prevention of Cruelty to Animals estimates over 3 million dogs enter their shelters annually - about 6 dogs per minute! Anything that can reduce the time and effort to take in strays can potentially help millions of dogs every year.

Different breeds have different needs, or react differently to people, so when a stray or lost dog is found, identifying the breed can be a great help.

A Raspberry Pi with a camera

Your team has been asked by a fictional animal shelter to build a Mutt Matcher - a device to help determine the breed of a dog when it has been found. This will be an IoT (Internet of Things) device based around a Raspberry Pi with a camera, and will take a photo of the dog, and then use an image classifier Machine learning (ML) model to determine the breed, before uploading the results to a web-based IoT application.

This device will help workers and volunteers to be able to quickly detect the breed and make decisions on the best way to approach and care for the dog.

An application dashboard showing the last detected breed as a German wire pointer, as well as a pie chart of detected breeds

The animal shelter has provided a set of images for a range of dog breeds to get you started. These can be used to train the ML model using a service called Custom Vision.

Pictures of dogs

Prerequisites

Each team member will need an Azure account. With Azure for Students, you can access $100 in free credit, and a large suite of free services!

Your team should be familiar with the following:

Hardware

To complete this workshop fully, ideally you will need a Raspberry Pi (model 3 or 4), and a camera. The camera can be a Raspberry Pi Camera module, or a USB web cam.

💁 If you don't have a Raspberry Pi, you can run this workshop using a PC or Mac to simulate an IoT device, with either a built in or external webcam.

Software

Each member of your team will also need the following software installed:

Resources

A series of resources will be provided to help your team determine the appropriate steps for completion. The resources provided should provide your team with enough information to achieve each goal.

These resources include:

  • Appropriate links to documentation to learn more about the services you are using and how to do common tasks
  • A pre-built application template for the cloud service part of your IoT application
  • Full source code for your IoT device

If you get stuck, you can always ask a mentor for additional help.

Exploring the application

Icons for Custom Vision, IoT Central and Raspberry Pi

The application your team will build will consist of 3 components:

  • An image classifier running in the cloud using Microsoft Custom Vision

  • An IoT application running in the cloud using Azure IoT Central

  • A Raspberry Pi based IoT device with a camera

The application flow described below

When a dog breed needs to be detected:

  1. A button on the IoT application is clicked

  2. The IoT application sends a command to the IoT device to detect the breed

  3. The IoT device captures an image using it's camera

  4. The image is sent to the image classifier ML model in the cloud to detect the breed

  5. The results of the classification are sent back to the IoT device

  6. The detected breed is sent from the IoT device to the IoT application

Goals

Your team will set up the Pi, ML model and IoT application, then connect everything to gether by deploying code to the IoT device.

💁 Each goal below defines what you need to achieve, and points you to relevant on-line resources that will show you how the cloud services or tools work. The aim here is not to provide you with detailed steps to complete the task, but allow you to explore the documentation and learn more about the services as you work out how to complete each goal.

  1. Set up your Raspberry Pi and camera: You will need to set up a clean install of Raspberry Pi OS on your Pi and ensure all the required software is installed.

    💻 If you are using a PC or Mac instead of a Pi, your team will need to set this up instead.

  2. Train your ML model: Your team will need to train the ML model in the cloud using Microsoft Custom Vision. You can train and test this model using the images that have been provided by the animal shelter.

  3. Set up your IoT application: Your team will set up an IoT application in the cloud using IoT Central, an IoT software-as-a-service (SaaS) platform. You will be provided with a pre-built application template to use.

  4. Deploy device code to your Pi: The code for the IoT device needs to be configured and deployed to the Raspberry Pi. You will then be able to test out your application.

    💻 If you are using a PC or Mac instead of a Pi, your team will need to run the device code locally.

💁 The first 3 goals can be worked on concurrently, with different team members working on different steps. Once these 3 are completed, the final step can be worked on by the team.

Validation

This workshop is designed to be a goal-oriented self-exploration of Azure and related technologies. Your team can validate some of the goals using the supplied validation scripts, and instructions are provided where relevant. Your team can then validate the final solution by using the IoT device to take a picture of one of the provided testing images and ensuring the correct result appears in the IoT application.

Where do we go from here?

This project is designed as a potential seed for ideas and future development during your hackathon. Other hack ideas for similar IoT devices that use image classification include:

  • Trash sorting into landfill, recycling, and compost.

  • Identification of disease in plant leaves.

  • Detecting skin cancer by classification of moles.

Improvements you could make to this device include:

  • Adding hardware such as a button to take a photograph, instead of relying on the IoT application.

  • Adding a screen or LCD display to the IoT device to show the breed.

  • Migrating the image classifier to the edge to allow the device to run without connectivity using Azure IoT Edge.

Learn more

You can learn more about using Custom Vision to train image classifiers and object detectors using the following resources:

You can learn more about Azure IoT Central using the following resources:

If you enjoy working with IoT, you can learn more using the following resource:

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Monitor Live USB Plug In & Plug Out Events

I/O - Live USB Monitoring Author: Jonathan Scott @jonathandata1 Date: 3/13/2021 CURRENT VERSION 1.0 This is just a simple bash script that calls a pyt

Jonathan Scott 17 Dec 03, 2022
Connect a TeslaMate instance to Home Assistant, using MQTT

TeslaBuddy Connect a TeslaMate instance to Home Assistant, using MQTT. It allows basic control of your Tesla vehicle via Home Assistant (currently, ju

4 May 23, 2022
Provide Unifi device info via api to Home Assistant that will give ap sensors

Unifi AP Device info Provide Unifi device info via api to Home Assistant that will give ap sensors

12 Jan 07, 2023
Watson-Assistant with integration capabilities

Watson-Assistant-Integration Watson-Assistant with integration capabilities "main.py" should be deployed as Cloud Function (Action) on IBM Cloud. For

Sergey Usachev 1 Dec 20, 2021
DOS-like OS for RP2040 basic microcontroller boards

Micropython DOS-like OS for RP2040 microcontroller boards. Check out the demo video at https://www.youtube.com/watch?v=Az_oiq8GE4Y To start the OS typ

RetiredWizard 58 Dec 27, 2022
A Python program that makes it easy to manage modules on a CircuitPython device!

CircuitPython-Bundle-Manager-v2 A Python program that makes it easy to manage modules on a CircuitPython device! The CircuitPython Bundle Manager v2 i

Ckyiu 1 Dec 18, 2021
Playing diabolo with two robot arms in ROS + Gazebo

Playing diabolo with robots This repository holds the ROS packages for playing diabolo with two UR5e robot arms on ROS Melodic (Ubuntu 18.04). Read ou

23 Dec 18, 2022
Hotplugger: Real USB Port Passthrough for VFIO/QEMU!

Hotplugger: Real USB Port Passthrough for VFIO/QEMU! Welcome to Hotplugger! This app, as the name might tell you, is a combination of some scripts (py

DARKGuy (Alemar) 66 Nov 24, 2022
Code reimplementation of some papers published in SAIL-Lab

SAIL SAIL-Lab统一代码库 Motivation 创建这个项目的动机最早来源于实验室组内成员相互Debug代码的时候遇到的麻烦。

Jianwen Chen 8 Nov 15, 2022
Implemented robot inverse kinematics.

robot_inverse_kinematics Project setup # put the package in the workspace $ cd ~/catkin_ws/ $ catkin_make $ source devel/setup.bash Description In thi

Jianming Han 2 Dec 08, 2022
SPI driven CircuitPython driver for PCA9745B constant current LED driver.

Introduction THIS IS VERY MUCH ALPHA AND IN ACTIVE DEVELOPMENT. THINGS WILL BREAK! THIS MAY ALSO BREAK YOUR THINGS! SPI driven CircuitPython driver fo

Andrew Ferguson 1 Jan 14, 2022
uOTA - OTA updater for MicroPython

Update your device firmware written in MicroPython over the air. Suitable for private and/or larger projects with many files.

Martin Komon 25 Dec 19, 2022
Raspberry Pi & Accelerometer with Losant's EEA

Raspberry Pi & Accelerometer with Losant's EEA This is a repository that contains companion code to this EEA How To guide. Each folder is named accord

Losant 1 Oct 29, 2021
Control DJI Tello with Raspberry Pi and PS4 Controller

Control-DJI-Tello-with-Raspberry-Pi-and-PS4-Controller Demo of this project see

MohammadReza Sharifi 24 Aug 11, 2022
Hardware: CTWingSKIT_BC28 Development Toolkit

IoT Portal Monitor Tools hardware: CTWingSKIT_BC28 Development Toolkit serial port driver: ST-LINK hardware development environment: Keli 5 MDK IoT pl

Fengming Zhang 1 Nov 07, 2021
A circle of LEDs

This repository contains all the design files, production files and example code for a simple circular LED display.

Pim de Groot 15 Aug 21, 2022
Component for deep integration LedFx from Home Assistant.

LedFX for Home Assistant Component for deep integration LedFx from Home Assistant. Table of Contents FAQ Install Config Performance FAQ Q. What versio

Dmitry Mamontov 28 Dec 13, 2022
Hook and simulate global keyboard events on Windows and Linux.

keyboard Take full control of your keyboard with this small Python library. Hook global events, register hotkeys, simulate key presses and much more.

BoppreH 3.2k Dec 30, 2022
Raspberry Pi Pico Escape Room game.

Pico Escape Room Raspberry Pi Pico Escape Room game. Parts Raspberry Pi Pico Set of 2 x 20-pin Headers for Raspberry Pi Pico 4PCS Breadboards Kit Incl

Kevin Thomas 5 Feb 02, 2022
gdsfactory is an EDA (electronics design automation) tool to Layout Integrated Circuits.

gdsfactory 3.5.5 gdsfactory is an EDA (electronics design automation) tool to Layout Integrated Circuits. It is build on top of phidl gdspy and klayou

147 Jan 04, 2023