Workshop for student hackathons focused on IoT dev

Overview

Scenario: The Mutt Matcher (IoT version)

According to the World Health Organization there are more than 200 million stray dogs worldwide. The American Society for the Prevention of Cruelty to Animals estimates over 3 million dogs enter their shelters annually - about 6 dogs per minute! Anything that can reduce the time and effort to take in strays can potentially help millions of dogs every year.

Different breeds have different needs, or react differently to people, so when a stray or lost dog is found, identifying the breed can be a great help.

A Raspberry Pi with a camera

Your team has been asked by a fictional animal shelter to build a Mutt Matcher - a device to help determine the breed of a dog when it has been found. This will be an IoT (Internet of Things) device based around a Raspberry Pi with a camera, and will take a photo of the dog, and then use an image classifier Machine learning (ML) model to determine the breed, before uploading the results to a web-based IoT application.

This device will help workers and volunteers to be able to quickly detect the breed and make decisions on the best way to approach and care for the dog.

An application dashboard showing the last detected breed as a German wire pointer, as well as a pie chart of detected breeds

The animal shelter has provided a set of images for a range of dog breeds to get you started. These can be used to train the ML model using a service called Custom Vision.

Pictures of dogs

Prerequisites

Each team member will need an Azure account. With Azure for Students, you can access $100 in free credit, and a large suite of free services!

Your team should be familiar with the following:

Hardware

To complete this workshop fully, ideally you will need a Raspberry Pi (model 3 or 4), and a camera. The camera can be a Raspberry Pi Camera module, or a USB web cam.

πŸ’ If you don't have a Raspberry Pi, you can run this workshop using a PC or Mac to simulate an IoT device, with either a built in or external webcam.

Software

Each member of your team will also need the following software installed:

Resources

A series of resources will be provided to help your team determine the appropriate steps for completion. The resources provided should provide your team with enough information to achieve each goal.

These resources include:

  • Appropriate links to documentation to learn more about the services you are using and how to do common tasks
  • A pre-built application template for the cloud service part of your IoT application
  • Full source code for your IoT device

If you get stuck, you can always ask a mentor for additional help.

Exploring the application

Icons for Custom Vision, IoT Central and Raspberry Pi

The application your team will build will consist of 3 components:

  • An image classifier running in the cloud using Microsoft Custom Vision

  • An IoT application running in the cloud using Azure IoT Central

  • A Raspberry Pi based IoT device with a camera

The application flow described below

When a dog breed needs to be detected:

  1. A button on the IoT application is clicked

  2. The IoT application sends a command to the IoT device to detect the breed

  3. The IoT device captures an image using it's camera

  4. The image is sent to the image classifier ML model in the cloud to detect the breed

  5. The results of the classification are sent back to the IoT device

  6. The detected breed is sent from the IoT device to the IoT application

Goals

Your team will set up the Pi, ML model and IoT application, then connect everything to gether by deploying code to the IoT device.

πŸ’ Each goal below defines what you need to achieve, and points you to relevant on-line resources that will show you how the cloud services or tools work. The aim here is not to provide you with detailed steps to complete the task, but allow you to explore the documentation and learn more about the services as you work out how to complete each goal.

  1. Set up your Raspberry Pi and camera: You will need to set up a clean install of Raspberry Pi OS on your Pi and ensure all the required software is installed.

    πŸ’» If you are using a PC or Mac instead of a Pi, your team will need to set this up instead.

  2. Train your ML model: Your team will need to train the ML model in the cloud using Microsoft Custom Vision. You can train and test this model using the images that have been provided by the animal shelter.

  3. Set up your IoT application: Your team will set up an IoT application in the cloud using IoT Central, an IoT software-as-a-service (SaaS) platform. You will be provided with a pre-built application template to use.

  4. Deploy device code to your Pi: The code for the IoT device needs to be configured and deployed to the Raspberry Pi. You will then be able to test out your application.

    πŸ’» If you are using a PC or Mac instead of a Pi, your team will need to run the device code locally.

πŸ’ The first 3 goals can be worked on concurrently, with different team members working on different steps. Once these 3 are completed, the final step can be worked on by the team.

Validation

This workshop is designed to be a goal-oriented self-exploration of Azure and related technologies. Your team can validate some of the goals using the supplied validation scripts, and instructions are provided where relevant. Your team can then validate the final solution by using the IoT device to take a picture of one of the provided testing images and ensuring the correct result appears in the IoT application.

Where do we go from here?

This project is designed as a potential seed for ideas and future development during your hackathon. Other hack ideas for similar IoT devices that use image classification include:

  • Trash sorting into landfill, recycling, and compost.

  • Identification of disease in plant leaves.

  • Detecting skin cancer by classification of moles.

Improvements you could make to this device include:

  • Adding hardware such as a button to take a photograph, instead of relying on the IoT application.

  • Adding a screen or LCD display to the IoT device to show the breed.

  • Migrating the image classifier to the edge to allow the device to run without connectivity using Azure IoT Edge.

Learn more

You can learn more about using Custom Vision to train image classifiers and object detectors using the following resources:

You can learn more about Azure IoT Central using the following resources:

If you enjoy working with IoT, you can learn more using the following resource:

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Open source home automation that puts local control and privacy first.

Home Assistant Open source home automation that puts local control and privacy first. Powered by a worldwide community of tinkerers and DIY enthusiast

Home Assistant 57k Jan 01, 2023
πŸ±πŸ–¨Cat printer is a portable thermal printer sold on AliExpress for around $20.

Cat printer is a portable thermal printer sold on AliExpress for around $20. This repository contains Python code for talking to the cat printer over

671 Jan 05, 2023
Code for the paper "Planning with Diffusion for Flexible Behavior Synthesis"

Planning with Diffusion Training and visualizing of diffusion models from Planning with Diffusion for Flexible Behavior Synthesis. Guided sampling cod

Michael Janner 310 Jan 07, 2023
Cascade Drone Swarm Physical Demonstration Project

Cascade Drone Swarm Physical Demonstration Project Table of Contents About The Project Built With Getting Started Prerequisites Installation About The

3 Aug 24, 2022
CPU benchmark by calculating Pi, powered by Python3

cpu-benchmark Info: CPU benchmark by calculating Pi, powered by Python 3. Algorithm The program calculates pi with an accuracy of 10,000 decimal place

Alex Dedyura 20 Jan 03, 2023
BMP180 sensor driver for Home Assistant used in Raspberry Pi

BMP180 sensor driver for Home Assistant used in Raspberry Pi Custom component BMP180 sensor for Home Assistant. Copy the content of this directory to

747Developments 1 Dec 17, 2021
Nordpool_diff custom integration for Home Assistant

nordpool_diff custom integration for Home Assistant Requires https://github.com/custom-components/nordpool Applies non-causal FIR differentiator1 to N

Joonas Pulakka 45 Dec 23, 2022
Raspberry Pi Pico and LoRaWAN from CircuitPython

Raspberry Pi Pico and LoRaWAN from CircuitPython Enable LoRaWAN communications on your Raspberry Pi Pico or any RP2040-based board using CircuitPython

Alasdair Allan 15 Oct 08, 2022
a library for using WS2812b leds (aka neopixels) with Raspberry Pi Pico

pico_ws2812b a library for using WS2812b leds (aka neopixels) with Raspberry Pi Pico You'll first need to save the ws2812b.py file to your device (for

76 Nov 25, 2022
Detic ros - A simple ROS wrapper for Detic instance segmentation using pre-trained dataset

Detic ros - A simple ROS wrapper for Detic instance segmentation using pre-trained dataset

Hirokazu Ishida 12 Nov 19, 2022
Python information display framework aimed at e-ink devices

My display, using a Raspberry Pi Zero W and Waveshare 6" e-paper hat infodisplay Modular information display framework aimed at e-ink devices. Built u

Niek Blankers 3 Apr 08, 2022
SPI driven CircuitPython driver for PCA9745B constant current LED driver.

Introduction THIS IS VERY MUCH ALPHA AND IN ACTIVE DEVELOPMENT. THINGS WILL BREAK! THIS MAY ALSO BREAK YOUR THINGS! SPI driven CircuitPython driver fo

Andrew Ferguson 1 Jan 14, 2022
Raspberry Pi & Accelerometer with Losant's EEA

Raspberry Pi & Accelerometer with Losant's EEA This is a repository that contains companion code to this EEA How To guide. Each folder is named accord

Losant 1 Oct 29, 2021
Lego Mindstorms EV3 and Lego Spike Prime

Lego Mindstorms EV3 and Lego Spike Prime What is FLL? The FIRST LEGO League Challenge Robotics Tournament challenges students from 9 to 16 years old t

Danimar Campos da Costa 1 Nov 14, 2021
The software that powers the sPot: a 4th generation

This code is meant to accompany this project in which a Spotify client is built into an iPod "Classic" from 2004. Everything is meant to run on a Raspberry Pi Zero W.

Guy Dupont 683 Dec 28, 2022
EuroPi: A reprogrammable Eurorack project based on the Raspberry Pi Pico

EuroPi The EuroPi is a fully user reprogrammable module based on the Raspberry Pi Pico, which allows users to process inputs and controls to produce o

Allen Synthesis 218 Jan 01, 2023
LED effects plugin for klipper

This plugin allows Klipper to run effects and animations on addressable LEDs, such as Neopixels, WS2812 or SK6812.

Julian Schill 238 Jan 04, 2023
LifeSaver automatically, periodically saves USB flash drive data into the PC

LifeSaver automatically, periodically saves USB flash drive data into the PC. Theoriticaly it will work with any any connected drive ex - Hard Disk ,SSD ... But, can't handle Backing up multipatition

siddharth dhaka 4 Sep 26, 2021
Pylorawan is a Micropython wrapper for lorawan devices from RAK Wireless.

pylorawan Pylorawan is a Micropython wrapper for lorawan devices from RAK Wireless. Tested on a Raspberry PI Pico with a RAK4200(H) Evaluation Board (

Peter Houghton 3 Nov 04, 2022
This Home Assistant custom component adding support for controlling Midea dehumidifiers on local network.

This custom component for Home Assistant adds support for Midea air conditioner and dehumidifier appliances via the local area network. homeassistant-

Nenad Bogojevic 92 Dec 31, 2022