This repository hosts the code for Stanford Pupper and Stanford Woofer, Raspberry Pi-based quadruped robots that can trot, walk, and jump.

Overview

Stanford Quadruped

Overview

This repository hosts the code for Stanford Pupper and Stanford Woofer, Raspberry Pi-based quadruped robots that can trot, walk, and jump.

Pupper CC Max Morse

Video of pupper in action: https://youtu.be/NIjodHA78UE

Project page: https://stanfordstudentrobotics.org/pupper

Documentation & build guide: https://pupper.readthedocs.io/en/latest/

How it works

Overview diagram The main program is run_robot.py which is located in this directory. The robot code is run as a loop, with a joystick interface, a controller, and a hardware interface orchestrating the behavior.

The joystick interface is responsible for reading joystick inputs from a UDP socket and converting them into a generic robot command type. A separate program, joystick.py, publishes these UDP messages, and is responsible for reading inputs from the PS4 controller over bluetooth. The controller does the bulk of the work, switching between states (trot, walk, rest, etc) and generating servo position targets. A detailed model of the controller is shown below. The third component of the code, the hardware interface, converts the position targets from the controller into PWM duty cycles, which it then passes to a Python binding to pigpiod, which then generates PWM signals in software and sends these signals to the motors attached to the Raspberry Pi. Controller diagram This diagram shows a breakdown of the robot controller. Inside, you can see four primary components: a gait scheduler (also called gait controller), a stance controller, a swing controller, and an inverse kinematics model.

The gait scheduler is responsible for planning which feet should be on the ground (stance) and which should be moving forward to the next step (swing) at any given time. In a trot for example, the diagonal pairs of legs move in sync and take turns between stance and swing. As shown in the diagram, the gait scheduler can be thought of as a conductor for each leg, switching it between stance and swing as time progresses.

The stance controller controls the feet on the ground, and is actually quite simple. It looks at the desired robot velocity, and then generates a body-relative target velocity for these stance feet that is in the opposite direction as the desired velocity. It also incorporates turning, in which case it rotates the feet relative to the body in the opposite direction as the desired body rotation.

The swing controller picks up the feet that just finished their stance phase, and brings them to their next touchdown location. The touchdown locations are selected so that the foot moves the same distance forward in swing as it does backwards in stance. For example, if in stance phase the feet move backwards at -0.4m/s (to achieve a body velocity of +0.4m/s) and the stance phase is 0.5 seconds long, then we know the feet will have moved backwards -0.20m. The swing controller will then move the feet forwards 0.20m to put the foot back in its starting place. You can imagine that if the swing controller only put the leg forward 0.15m, then every step the foot would lag more and more behind the body by -0.05m.

Both the stance and swing controllers generate target positions for the feet in cartesian coordinates relative the body center of mass. It's convenient to work in cartesian coordinates for the stance and swing planning, but we now need to convert them to motor angles. This is done by using an inverse kinematics model, which maps between cartesian body coordinates and motor angles. These motor angles, also called joint angles, are then populated into the state variable and returned by the model.

How to Build Pupper

Main documentation: https://pupper.readthedocs.io/en/latest/

You can find the bill of materials, pre-made kit purchasing options, assembly instructions, software installation, etc at this website.

Help

Owner
Stanford Student Robotics
Stanford Student Robotics
Python code written to utilize the Korlan usb2can hardware to send and receive data over the can-bus on a 2008 Nissan 350z

nissan_ecu_hacking Python code written to utilize the Korlan usb2can hardware to send and receive data over the can-bus on a 2008 Nissan 350z My goal

Liam Goss 11 Sep 24, 2022
Play music on Raspberry Pi Pico Without CPU involvement

MicroPython_PIO_Music_DMA Play music on Raspberry Pi Pico Without CPU involvement This is based on PIOBeep (https://github.com/benevpi/pico_pio_buzz)

3 Nov 27, 2022
Self Driving Car Prototype

Package Delivery Rover 🚀 This project is a prototype of Self Driving Car. It's based on embedded systems, to meet the current requirement of delivery

Abhishek Pawar 1 Oct 31, 2021
Simple Microservice to control 433Mhz wireless sockets over HTTP, e.g. on a RaspberryPi

REST-light is a simple microservice to control 433Mhz wireless sockets over HTTP, e.g. on a RaspberryPi. The main usage is an easy integration of 433M

Pascal Höhnel 1 Jan 09, 2022
iot-dashboard: Fully integrated architecture platform with a dashboard for Logistics Monitoring, Internet of Things.

Fully integrated architecture platform with a dashboard for Logistics Monitoring, Internet of Things. Written in Python. Flask applicati

2 Jul 29, 2022
Homeautomation system created with Raspberry Pi 3 and Firebase.

Homeautomation System - Raspberry Pi 3 Desenvolvido com Python, Flask com AJAX e Firebase permite o controle local e remoto Itens necessários Raspberr

Joselino Santos 0 Mar 09, 2022
A iot Bike sytem based on RaspberryPi, Ardiuino

Cyclic 's Kernel ---- A iot Bike sytem based on RaspberryPi, Ardiuino, etc 0x1 What is This? Cyclic 's Kernel is an independent System With self-produ

Retr0mous 2 Oct 09, 2022
Toy robot that traverses on a finite surface

Toy Robot Challenge - Release Notes November 12, 2021 New features Initialisation - Users can set the home position and heading of the robot. Position

Ze Fei Teo 0 Feb 03, 2022
Designed a system that can efficiently sort recyclables and transfer them to corresponding bins using Python, a Raspberry Pi, and Quanser Labs.

System for Sorting and Recycling Containers - Project 3 Table of contents Overview The challenge Screenshot My process Built with Code snippets What I

Mit Patel 2 Dec 02, 2022
PyTorch implementation of paper "MT-ORL: Multi-Task Occlusion Relationship Learning" (ICCV 2021)

MT-ORL: Multi-Task Occlusion Relationship Learning Official implementation of paper "MT-ORL: Multi-Task Occlusion Relationship Learning" (ICCV 2021) P

Panhe Feng 12 Oct 11, 2022
Drobo Status is a python program that will connect to your Drobo and return JSON data regarding your Drobo

This is a simple python script that will run a docker container to pull data from Drobo. It will give information like (Name, serial, firmware, disk-total, disk-used, disk-free and individual disk st

Biofects 1 Jan 15, 2022
Robo Arm :: Rigging is a rigging addon for Blender that helps animating industrial robotic arms.

Robo Arm :: Rigging Robo Arm :: Rigging is a rigging addon for Blender that helps animating industrial robotic arms. It construct serial links(a kind

2 Nov 18, 2021
AERO 421: Spacecraft Attitude, Dynamics, and Control Final Project.

AERO - 421 Final Project Redevelopment Spacecraft Attitude, Dynamics, and Control: Simulation to determine and control a satellite's attitude in LEO.

Gagandeep Thapar 3 Dec 16, 2022
This repository hosts the code for Stanford Pupper and Stanford Woofer, Raspberry Pi-based quadruped robots that can trot, walk, and jump.

This repository hosts the code for Stanford Pupper and Stanford Woofer, Raspberry Pi-based quadruped robots that can trot, walk, and jump.

Stanford Student Robotics 1.2k Dec 25, 2022
Examples to accompany the

Examples to accompany the "Raspberry Pi Pico Python SDK" book published by Raspberry Pi Trading, which forms part of the technical documentation in support of Raspberry Pi Pico and the MicroPython po

Raspberry Pi 589 Jan 08, 2023
Home-Assistant MQTT bridge for Panasonic Comfort Cloud

Panasonic Comfort Cloud MQTT Bridge Home-Assistant MQTT bridge for Panasonic Comfort Cloud. Note: Currently this brige is a one evening prototype proj

Santtu Järvi 2 Jan 04, 2023
circuitpython version of PyBasic for microcontrollers

cPyBasic Circuitpython version of PyBasic for microcontrollers Current version work only for Adafruit titano & CardKB for now. The origninal PyBasic w

BeBoXoS 3 Nov 14, 2021
Sensor of Temperature Feels Like for Home Assistant.

Please ⭐ this repo if you find it useful Sensor of Temperature Feels Like for Home Assistant Installation Install from HACS (recommended) Have HACS in

Andrey 60 Dec 25, 2022
Create a low powered, renewable generation forecast display with a Raspberry Pi Zero & Inky wHAT.

GB Renewable Forecast Display This Raspberry Pi powered eInk display aims to give you a quick way to time your home energy usage to help balance the g

Andy Brace 32 Jul 02, 2022
A simple small scale electric car was build which can be driven by remote control and features a fully autonomous parking procedure.

personal-autonomous-parking-car-raspberry A simple electric car model was build using Raspbery pi. The car has remote control and autonomous operation

Kostas Ziovas 2 Jan 26, 2022