๐Ÿ“Š Charts with pure python

Overview

chart

MIT Travis PyPI Downloads

A zero-dependency python package that prints basic charts to a Jupyter output

Charts supported:

  • Bar graphs
  • Scatter plots
  • Histograms
  • ๐Ÿ‘ ๐Ÿ“Š ๐Ÿ‘

Examples

Bar graphs can be drawn quickly with the bar function:

from chart import bar

x = [500, 200, 900, 400]
y = ['marc', 'mummify', 'chart', 'sausagelink']

bar(x, y)
       marc: โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡             
    mummify: โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡                       
      chart: โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡
sausagelink: โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡โ–‡                              

And the bar function can accept columns from a pd.DataFrame:

from chart import bar
import pandas as pd

df = pd.DataFrame({
    'artist': ['Tame Impala', 'Childish Gambino', 'The Knocks'],
    'listens': [8_456_831, 18_185_245, 2_556_448]
})
bar(df.listens, df.artist, width=20, label_width=11, mark='๐Ÿ”Š')
Tame Impala: ๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š           
Childish Ga: ๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š
 The Knocks: ๐Ÿ”Š๐Ÿ”Š๐Ÿ”Š                                

Histograms are just as easy:

from chart import histogram

x = [1, 2, 4, 3, 3, 1, 7, 9, 9, 1, 3, 2, 1, 2]

histogram(x)
โ–‡        
โ–‡        
โ–‡        
โ–‡        
โ–‡ โ–‡      
โ–‡ โ–‡      
โ–‡ โ–‡      
โ–‡ โ–‡     โ–‡
โ–‡ โ–‡     โ–‡
โ–‡ โ–‡   โ–‡ โ–‡

And they can accept objects created by scipy:

from chart import histogram
import scipy.stats as stats
import numpy as np

np.random.seed(14)
n = stats.norm(loc=0, scale=10)

histogram(n.rvs(100), bins=14, height=7, mark='๐Ÿ‘')
            ๐Ÿ‘              
            ๐Ÿ‘   ๐Ÿ‘          
            ๐Ÿ‘ ๐Ÿ‘ ๐Ÿ‘          
            ๐Ÿ‘ ๐Ÿ‘ ๐Ÿ‘          
        ๐Ÿ‘   ๐Ÿ‘ ๐Ÿ‘ ๐Ÿ‘          
      ๐Ÿ‘ ๐Ÿ‘ ๐Ÿ‘ ๐Ÿ‘ ๐Ÿ‘ ๐Ÿ‘ ๐Ÿ‘ ๐Ÿ‘ ๐Ÿ‘    
      ๐Ÿ‘ ๐Ÿ‘ ๐Ÿ‘ ๐Ÿ‘ ๐Ÿ‘ ๐Ÿ‘ ๐Ÿ‘ ๐Ÿ‘ ๐Ÿ‘   ๐Ÿ‘

Scatter plots can be drawn with a simple scatter call:

from chart import scatter

x = range(0, 20)
y = range(0, 20)

scatter(x, y)
                                       โ€ข
                                   โ€ข โ€ข  
                                 โ€ข      
                             โ€ข โ€ข        
                         โ€ข โ€ข            
                       โ€ข                
                  โ€ข  โ€ข                  
                โ€ข                       
            โ€ข โ€ข                         
        โ€ข โ€ข                             
      โ€ข                                 
  โ€ข โ€ข                                   
โ€ข                                       

And at this point you gotta know it works with any np.array:

from chart import scatter
import numpy as np

np.random.seed(1)
N = 100
x = np.random.normal(100, 50, size=N)
y = x * -2 + 25 + np.random.normal(0, 25, size=N)

scatter(x, y, width=20, height=9, mark='^')
^^                  
 ^                  
    ^^^             
    ^^^^^^^         
       ^^^^^^       
        ^^^^^^^     
            ^^^^    
             ^^^^^ ^
                ^^ ^

In fact, all chart functions work with pandas, numpy, scipy and regular python objects.

Preprocessors

In order to create the simple outputs generated by bar, histogram, and scatter I had to create a couple of preprocessors, namely: NumberBinarizer and RangeScaler.

I tried to adhere to the scikit-learn API in their construction. Although you won't need them to use chart here they are for your tinkering:

from chart.preprocessing import NumberBinarizer

nb = NumberBinarizer(bins=4)
x = range(10)
nb.fit(x)
nb.transform(x)
[0, 0, 0, 1, 1, 2, 2, 3, 3, 3]
from chart.preprocessing import RangeScaler

rs = RangeScaler(out_range=(0, 10), round=False)
x = range(50, 59)
rs.fit_transform(x)
[0.0, 1.25, 2.5, 3.75, 5.0, 6.25, 7.5, 8.75, 10.0]

Installation

pip install chart

Contribute

For feature requests or bug reports, please use Github Issues

Inspiration

I wanted a super-light-weight library that would allow me to quickly grok data. Matplotlib had too many dependencies, and Altair seemed overkill. Though I really like the idea of termgraph, it didn't really fit well or integrate with my Jupyter workflow. Here's to chart ๐Ÿฅ‚ (still can't believe I got it on PyPI)

Owner
Max Humber
Human
Max Humber
Streamlit component for Let's-Plot visualization library

streamlit-letsplot This is a work-in-progress, providing a convenience function to plot charts from the Lets-Plot visualization library. Example usage

Randy Zwitch 9 Nov 03, 2022
๐ŸŽจ Python Echarts Plotting Library

pyecharts Python โค๏ธ ECharts = pyecharts English README ๐Ÿ“ฃ ็ฎ€ไป‹ Apache ECharts (incubating) ๆ˜ฏไธ€ไธช็”ฑ็™พๅบฆๅผ€ๆบ็š„ๆ•ฐๆฎๅฏ่ง†ๅŒ–๏ผŒๅ‡ญๅ€Ÿ็€่‰ฏๅฅฝ็š„ไบคไบ’ๆ€ง๏ผŒ็ฒพๅทง็š„ๅ›พ่กจ่ฎพ่ฎก๏ผŒๅพ—ๅˆฐไบ†ไผ—ๅคšๅผ€ๅ‘่€…็š„่ฎคๅฏใ€‚่€Œ Python ๆ˜ฏไธ€้—จๅฏŒๆœ‰่กจ่พพ

pyecharts 13.1k Jan 03, 2023
PyPassword is a simple follow up to PyPassphrase

PyPassword PyPassword is a simple follow up to PyPassphrase. After finishing that project it occured to me that while some may wish to use that option

Scotty 2 Jan 22, 2022
Movies-chart - A CLI app gets the top 250 movies of all time from imdb.com and the top 100 movies from rottentomatoes.com

movies-chart This CLI app gets the top 250 movies of all time from imdb.com and

3 Feb 17, 2022
๐Ÿ“Š๐Ÿ“ˆ Serves up Pandas dataframes via the Django REST Framework for use in client-side (i.e. d3.js) visualizations and offline analysis (e.g. Excel)

๐Ÿ“Š๐Ÿ“ˆ Serves up Pandas dataframes via the Django REST Framework for use in client-side (i.e. d3.js) visualizations and offline analysis (e.g. Excel)

wq framework 1.2k Jan 01, 2023
Plotting library for IPython/Jupyter notebooks

bqplot 2-D plotting library for Project Jupyter Introduction bqplot is a 2-D visualization system for Jupyter, based on the constructs of the Grammar

3.4k Dec 30, 2022
SummVis is an interactive visualization tool for text summarization.

SummVis is an interactive visualization tool for analyzing abstractive summarization model outputs and datasets.

Robustness Gym 246 Dec 08, 2022
๐Ÿ“Š Charts with pure python

A zero-dependency python package that prints basic charts to a Jupyter output Charts supported: Bar graphs Scatter plots Histograms ๐Ÿ‘ ๐Ÿ“Š ๐Ÿ‘ Examples

Max Humber 54 Oct 04, 2022
A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews

hvPlot A high-level plotting API for the PyData ecosystem built on HoloViews. Build Status Coverage Latest dev release Latest release Docs What is it?

HoloViz 694 Jan 04, 2023
PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disributions on polytopes

PolytopeSampler PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disrib

9 Sep 26, 2022
A dashboard built using Plotly-Dash for interactive visualization of Dex-connected individuals across the country.

Dashboard For The DexConnect Platform of Dexterity Global Working prototype submission for internship at Dexterity Global Group. Dashboard for real ti

Yashasvi Misra 2 Jun 15, 2021
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 01, 2023
Multi-class confusion matrix library in Python

Table of contents Overview Installation Usage Document Try PyCM in Your Browser Issues & Bug Reports Todo Outputs Dependencies Contribution References

Sepand Haghighi 1.3k Dec 31, 2022
1900-2016 Olympic Data Analysis in Python by plotting different graphs

๐Ÿ”ฅ Olympics Data Analysis ๐Ÿ”ฅ In Data Science field, there is a big topic before creating a model for future prediction is Data Analysis. We can find o

Sayan Roy 1 Feb 06, 2022
Generate the report for OCULTest.

Sample report generated in this function Usage example from utils.gen_report import generate_report if __name__ == '__main__': # def generate_rep

Philip Guo 1 Mar 10, 2022
Python script to generate a visualization of various sorting algorithms, image or video.

sorting_algo_visualizer Python script to generate a visualization of various sorting algorithms, image or video.

146 Nov 12, 2022
a plottling library for python, based on D3

Hello August 2013 Hello! Maybe you're looking for a nice Python interface to build interactive, javascript based plots that look as nice as all those

Mike Dewar 1.4k Dec 28, 2022
Automatically generate GitHub activity!

Commit Bot Automatically generate GitHub activity! We've all wanted to be the developer that commits every day, but that requires a lot of work. Let's

Ricky 4 Jun 07, 2022
Tools for calculating and visualizing Elo-like ratings of MLB teams using Retosheet data

Overview This project uses historical baseball games data to calculate an Elo-like rating for MLB teams based on regular season match ups. The Elo rat

Lukas Owens 0 Aug 25, 2021
Fast data visualization and GUI tools for scientific / engineering applications

PyQtGraph A pure-Python graphics library for PyQt5/PyQt6/PySide2/PySide6 Copyright 2020 Luke Campagnola, University of North Carolina at Chapel Hill h

pyqtgraph 3.1k Jan 08, 2023