PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

Overview

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem

Installation

To install necessary python package for our work:

conda install pytorch torchvision numpy matplotlib pandas tqdm tensorboard cudatoolkit=11.1 -c pytorch -c conda-forge
pip install opencv-python tabulate moviepy openpyxl pyntcloud open3d==0.9 pytorch-lightning==1.4.9

To setup dataset for training for our work, please download:

To setup dataset for testing, please use:

  • ETH3D High-Res (PatchMatchNet pre-processed sets)
    • NOTE: We use our own script to pre-process. We are currently preparing code for the script. We will post update once it is available.
  • Tanks and Temples (MVSNet pre-processed sets)

Training

To train out method:

python bin/train.py --experiment_name=EXPERIMENT_NAME \
                    --log_path=TENSORBOARD_LOG_PATH \
                    --checkpoint_path=CHECKPOINT_PATH \
                    --dataset_path=ROOT_PATH_TO_DATA \
                    --dataset={BlendedMVS,DTU} \
                    --resume=True # if want to resume training with the same experiment_name

Testing

To test our method, we need two scripts. First script to generate geometetry, and the second script to fuse the geometry. Geometry generation code:

python bin/generate.py --experiment_name=EXPERIMENT_USED_FOR_TRAINING \
                       --checkpoint_path=CHECKPOINT_PATH \
                       --epoch_id=EPOCH_ID \
                       --num_views=NUMBER_OF_VIEWS \
                       --dataset_path=ROOT_PATH_TO_DATA \
                       --output_path=PATH_TO_OUTPUT_GEOMETRY \
                       --width=(optional)WIDTH \
                       --height=(optional)HEIGHT \
                       --dataset={ETH3DHR, TanksAndTemples} \
                       --device=DEVICE

This will generate depths / normals / images into the folder specified by --output_path. To be more precise:

OUTPUT_PATH/
    EXPERIMENT_NAME/
        CHECKPOINT_FILE_NAME/
            SCENE_NAME/
                000000_camera.pth <-- contains intrinsics / extrinsics
                000000_depth_map.pth
                000000_normal_map.pth
                000000_meta.pth <-- contains src_image ids
                ...

Once the geometries are generated, we can use the fusion code to fuse them into point cloud: GPU Fusion code:

python bin/fuse_output.py --output_path=OUTPUT_PATH_USED_IN_GENERATE.py
                          --experiment_name=EXPERIMENT_NAME \
                          --epoch_id=EPOCH_ID \
                          --dataset=DATASET \
                          # fusion related args
                          --proj_th=PROJECTION_DISTANCE_THRESHOLD \
                          --dist_th=DISTANCE_THRESHOLD \
                          --angle_th=ANGLE_THRESHOLD \
                          --num_consistent=NUM_CONSITENT_IMAGES \
                          --target_width=(Optional) target image width for fusion \
                          --target_height=(Optional) target image height for fusion \
                          --device=DEVICE \

The target width / height are useful for fusing depth / normal after upsampling.

We also provide ETH3D testing script:

python bin/evaluate_eth3d.py --eth3d_binary_path=PATH_TO_BINARY_EXE \
                             --eth3d_gt_path=PATH_TO_GT_MLP_FOLDER \
                             --output_path=PATH_TO_FOLDER_WITH_POINTCLOUDS \
                             --experiment_name=NAME_OF_EXPERIMENT \
                             --epoch_id=EPOCH_OF_CHECKPOINT_TO_LOAD (default last.ckpt)

Resources

Citation

If you want to use our work in your project, please cite:

@InProceedings{lee2021patchmatchrl,
    author    = {Lee, Jae Yong and DeGol, Joseph and Zou, Chuhang and Hoiem, Derek},
    title     = {PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
    month     = {October},
    year      = {2021}
}
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
The authors' official PyTorch SigWGAN implementation

The authors' official PyTorch SigWGAN implementation This repository is the official implementation of [Sig-Wasserstein GANs for Time Series Generatio

9 Jun 16, 2022
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
An offline deep reinforcement learning library

d3rlpy: An offline deep reinforcement learning library d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. imp

Takuma Seno 817 Jan 02, 2023
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
A curated list of neural network pruning resources.

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Yang He 1.7k Jan 09, 2023