PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

Overview

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem

Installation

To install necessary python package for our work:

conda install pytorch torchvision numpy matplotlib pandas tqdm tensorboard cudatoolkit=11.1 -c pytorch -c conda-forge
pip install opencv-python tabulate moviepy openpyxl pyntcloud open3d==0.9 pytorch-lightning==1.4.9

To setup dataset for training for our work, please download:

To setup dataset for testing, please use:

  • ETH3D High-Res (PatchMatchNet pre-processed sets)
    • NOTE: We use our own script to pre-process. We are currently preparing code for the script. We will post update once it is available.
  • Tanks and Temples (MVSNet pre-processed sets)

Training

To train out method:

python bin/train.py --experiment_name=EXPERIMENT_NAME \
                    --log_path=TENSORBOARD_LOG_PATH \
                    --checkpoint_path=CHECKPOINT_PATH \
                    --dataset_path=ROOT_PATH_TO_DATA \
                    --dataset={BlendedMVS,DTU} \
                    --resume=True # if want to resume training with the same experiment_name

Testing

To test our method, we need two scripts. First script to generate geometetry, and the second script to fuse the geometry. Geometry generation code:

python bin/generate.py --experiment_name=EXPERIMENT_USED_FOR_TRAINING \
                       --checkpoint_path=CHECKPOINT_PATH \
                       --epoch_id=EPOCH_ID \
                       --num_views=NUMBER_OF_VIEWS \
                       --dataset_path=ROOT_PATH_TO_DATA \
                       --output_path=PATH_TO_OUTPUT_GEOMETRY \
                       --width=(optional)WIDTH \
                       --height=(optional)HEIGHT \
                       --dataset={ETH3DHR, TanksAndTemples} \
                       --device=DEVICE

This will generate depths / normals / images into the folder specified by --output_path. To be more precise:

OUTPUT_PATH/
    EXPERIMENT_NAME/
        CHECKPOINT_FILE_NAME/
            SCENE_NAME/
                000000_camera.pth <-- contains intrinsics / extrinsics
                000000_depth_map.pth
                000000_normal_map.pth
                000000_meta.pth <-- contains src_image ids
                ...

Once the geometries are generated, we can use the fusion code to fuse them into point cloud: GPU Fusion code:

python bin/fuse_output.py --output_path=OUTPUT_PATH_USED_IN_GENERATE.py
                          --experiment_name=EXPERIMENT_NAME \
                          --epoch_id=EPOCH_ID \
                          --dataset=DATASET \
                          # fusion related args
                          --proj_th=PROJECTION_DISTANCE_THRESHOLD \
                          --dist_th=DISTANCE_THRESHOLD \
                          --angle_th=ANGLE_THRESHOLD \
                          --num_consistent=NUM_CONSITENT_IMAGES \
                          --target_width=(Optional) target image width for fusion \
                          --target_height=(Optional) target image height for fusion \
                          --device=DEVICE \

The target width / height are useful for fusing depth / normal after upsampling.

We also provide ETH3D testing script:

python bin/evaluate_eth3d.py --eth3d_binary_path=PATH_TO_BINARY_EXE \
                             --eth3d_gt_path=PATH_TO_GT_MLP_FOLDER \
                             --output_path=PATH_TO_FOLDER_WITH_POINTCLOUDS \
                             --experiment_name=NAME_OF_EXPERIMENT \
                             --epoch_id=EPOCH_OF_CHECKPOINT_TO_LOAD (default last.ckpt)

Resources

Citation

If you want to use our work in your project, please cite:

@InProceedings{lee2021patchmatchrl,
    author    = {Lee, Jae Yong and DeGol, Joseph and Zou, Chuhang and Hoiem, Derek},
    title     = {PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
    month     = {October},
    year      = {2021}
}
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
ServiceX Transformer that converts flat ROOT ntuples into columnwise data

ServiceX_Uproot_Transformer ServiceX Transformer that converts flat ROOT ntuples into columnwise data Usage You can invoke the transformer from the co

Vis 0 Jan 20, 2022
Training a deep learning model on the noisy CIFAR dataset

Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai

1 Jun 14, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022