PyHarmonize: Adding harmony lines to recorded melodies in Python

Overview

PyHarmonize: Adding harmony lines to recorded melodies in Python

About

To use this module, the user provides

  • a wav file containing a melody,
  • the key in which the melody is, and
  • the scale degree(s) of the desired harmony.

The module then outputs a wav file which contains the original melody, together with the added harmony line(s).

We first give some examples, the installation instructions are further below.

Examples (with audio files)

We here provide three audio examples together with the code used to generate them. See the folder examples/ for more detailed example notebooks.

Note that the embedded mp4 video files that contain the audio in the following are by default muted.

Example 1: Added third on a distorted electric guitar

In this example we add a harmony line a third above the input melody, which is played on a distorted electric guitar. Here are the input signal used, as well as the final result:

guitar_distorted_E_major_ex1.mp4
guitar_distorted_E_major_ex1_added_3.mp4

And here is the code used to generate this output:

import PyHarmonize

# Create dictionary with parameters
parameters = {'input_filename':'./guitar_distorted_E_major_ex1.wav', # input audio is in the key of E major
              'output_filename':'./guitar_distorted_E_major_ex1_with_harmony.wav',
              'key':'E',
              'mode':'major'}

# Generate instance of the class harmony_generator
harmony_generator = PyHarmonize.harmony_generator(parameters=parameters)

# Add harmony
# Note that scale_degrees = [3] means we add one melody line,
# which is always three notes higher within the scale. Depending on the note
# played, "three notes higher within the scale" is either 3 or 4 semitones up.
output_dictionary = harmony_generator.add_harmonies(scale_degrees = [3])

Example 2: Added third and fifth on a distorted electric guitar

In this example we add two harmony lines to an input signal. Here are the input signal and the result:

guitar_distorted_E_major_ex2.mp4
guitar_distorted_E_major_ex2_added_3_5.mp4

The code for this example is essentially the same as in the first example, except that now the list scale_degrees contains more than one element:

import PyHarmonize

# Create dictionary with parameters
parameters = {'input_filename':'./guitar_distorted_E_major_ex2.wav', # input audio is in the key of E major
              'output_filename':'./guitar_distorted_E_major_ex2_with_harmony.wav',
              'key':'E',
              'mode':'major'}

# Generate instance of the class harmony_generator
harmony_generator = PyHarmonize.harmony_generator(parameters=parameters)

# Add harmony
output_dictionary = harmony_generator.add_harmonies(scale_degrees = [3, 5]) # add third and fifth

If we add some more octaves and thirds, we can generate a more synthesizer-like sound. Here is an example for that:

guitar_distorted_E_major_ex2_added_3_5_octaves.mp4

To generate this output, we pass scale_degrees = [-8, -6, 3, 5, 8, 10], which adds pitch shifted signals an octave lower (-8), the third one octave lower (-6), a third up (3), a fifth up (5), an octave up (8), and a third an octave higher (10).

Example 3: Added third, fifth, and octave on a clean electric guitar

In this example we add thirds, fifths, and octaves to a melody in A major, which is played on a clean electric guitar. Here are input and output files:

guitar_clean_A_major.mp4
guitar_clean_A_major_added_3_5_8.mp4

The code for generating this harmony is:

import PyHarmonize

# Create dictionary with parameters
parameters = {'input_filename':'./guitar_clean_A_major.wav', # input audio is in the key of A major
              'output_filename':'./guitar_clean_A_major_with_harmony.wav',
              'key':'A',
              'mode':'major'}

# Generate instance of the class harmony_generator
harmony_generator = PyHarmonize.harmony_generator(parameters=parameters)

# Add harmony
output_dictionary = harmony_generator.add_harmonies(scale_degrees = [3,5,8])
# The list
#       scale_degrees = [3, 5, 8]
# means that we add four melody lines:
# 1. a third up
# 2. a fifth up
# 3. one octave up

Installation

To install the module PyHarmonize, as well as its requirements (NumPy, SciPy, librosa, and SoundFile), clone this repository and run the installation script:

>> git clone https://github.com/juliankappler/PyHarmonize.git
>> cd PyHarmonize
>> pip install -r requirements.txt
>> python setup.py install
Owner
Julian Kappler
Julian Kappler
Open MLOps - A Production-focused Open-Source Machine Learning Framework

Open MLOps - A Production-focused Open-Source Machine Learning Framework Open MLOps is a set of open-source tools carefully chosen to ease user experi

Data Revenue 590 Dec 28, 2022
An AutoML survey focusing on practical systems.

This project is a community effort in constructing and maintaining an up-to-date beginner-friendly introduction to AutoML, focusing on practical systems. AutoML is a big field, and continues to grow

AutoGOAL 16 Aug 14, 2022
TensorFlow implementation of an arbitrary order Factorization Machine

This is a TensorFlow implementation of an arbitrary order (=2) Factorization Machine based on paper Factorization Machines with libFM. It supports: d

Mikhail Trofimov 785 Dec 21, 2022
The Emergence of Individuality

The Emergence of Individuality

16 Jul 20, 2022
CVXPY is a Python-embedded modeling language for convex optimization problems.

CVXPY The CVXPY documentation is at cvxpy.org. We are building a CVXPY community on Discord. Join the conversation! For issues and long-form discussio

4.3k Jan 08, 2023
Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational model)

Sum-Square_Error-Business-Analytical-Tool- Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational m

om Podey 1 Dec 03, 2021
PySpark + Scikit-learn = Sparkit-learn

Sparkit-learn PySpark + Scikit-learn = Sparkit-learn GitHub: https://github.com/lensacom/sparkit-learn About Sparkit-learn aims to provide scikit-lear

Lensa 1.1k Jan 04, 2023
This is the material used in my free Persian course: Machine Learning with Python

This is the material used in my free Persian course: Machine Learning with Python

Yara Mohamadi 4 Aug 07, 2022
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy m

Robin 55 Dec 27, 2022
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

EconML/CausalML KDD 2021 Tutorial 124 Dec 28, 2022
Tools for Optuna, MLflow and the integration of both.

HPOflow - Sphinx DOC Tools for Optuna, MLflow and the integration of both. Detailed documentation with examples can be found here: Sphinx DOC Table of

Telekom Open Source Software 17 Nov 20, 2022
healthy and lesion models for learning based on the joint estimation of stochasticity and volatility

health-lesion-stovol healthy and lesion models for learning based on the joint estimation of stochasticity and volatility Reference please cite this p

5 Nov 01, 2022
Decision Tree Regression algorithm implemented on Python from scratch.

Decision_Tree_Regression I implemented the decision tree regression algorithm on Python. Unlike regular linear regression, this algorithm is used when

1 Dec 22, 2021
A collection of video resources for machine learning

Machine Learning Videos This is a collection of recorded talks at machine learning conferences, workshops, seminars, summer schools, and miscellaneous

Dustin Tran 1.5k Dec 29, 2022
Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Priyansh Sharma 7 Nov 09, 2022
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

vincent d warmerdam 24 Dec 09, 2022
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
A Python implementation of the Robotics Toolbox for MATLAB

Robotics Toolbox for Python A Python implementation of the Robotics Toolbox for MATLAB® GitHub repository Documentation Wiki (examples and details) Sy

Peter Corke 1.2k Jan 07, 2023
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 09, 2023
Estudos e projetos feitos com PySpark.

PySpark (Spark com Python) PySpark é uma biblioteca Spark escrita em Python, e seu objetivo é permitir a análise interativa dos dados em um ambiente d

Karinne Cristina 54 Nov 06, 2022