LazyText is inspired b the idea of lazypredict, a library which helps build a lot of basic models without much code.

Overview

LazyText

lazy

lazytext Documentation Code Coverage Downloads

LazyText is inspired b the idea of lazypredict, a library which helps build a lot of basic mpdels without much code. LazyText is for text what lazypredict is for numeric data.

  • Free Software: MIT licence

Installation

To install LazyText

pip install lazytext

Usage

To use lazytext import in your project as

from lazytext.supervised import LazyTextPredict

Text Classification

Text classification on BBC News article classification.

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from lazytext.supervised import LazyTextPredict
import re
import nltk

# Load the dataset
df = pd.read_csv("tests/assets/bbc-text.csv")
df.dropna(inplace=True)

# Download models required for text cleaning
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')
nltk.download('omw-1.4')

# split the data into train set and test set
df_train, df_test = train_test_split(df, test_size=0.3, random_state=13)

# Tokenize the words
df_train['clean_text'] = df_train['text'].apply(nltk.word_tokenize)
df_test['clean_text'] = df_test['text'].apply(nltk.word_tokenize)

# Remove stop words
stop_words=set(nltk.corpus.stopwords.words("english"))
df_train['text_clean'] = df_train['clean_text'].apply(lambda x: [item for item in x if item not in stop_words])
df_test['text_clean'] = df_test['clean_text'].apply(lambda x: [item for item in x if item not in stop_words])

# Remove numbers, punctuation and special characters (only keep words)
regex = '[a-z]+'
df_train['text_clean'] = df_train['text_clean'].apply(lambda x: [item for item in x if re.match(regex, item)])
df_test['text_clean'] = df_test['text_clean'].apply(lambda x: [item for item in x if re.match(regex, item)])

# Lemmatization
lem = nltk.stem.wordnet.WordNetLemmatizer()
df_train['text_clean'] = df_train['text_clean'].apply(lambda x: [lem.lemmatize(item, pos='v') for item in x])
df_test['text_clean'] = df_test['text_clean'].apply(lambda x: [lem.lemmatize(item, pos='v') for item in x])

# Join the words again to form sentences
df_train["clean_text"] = df_train.text_clean.apply(lambda x: " ".join(x))
df_test["clean_text"] = df_test.text_clean.apply(lambda x: " ".join(x))

# Tfidf vectorization
vectorizer = TfidfVectorizer()

x_train = vectorizer.fit_transform(df_train.clean_text)
x_test = vectorizer.transform(df_test.clean_text)
y_train = df_train.category.tolist()
y_test = df_test.category.tolist()

lazy_text = LazyTextPredict(
    classification_type="multiclass",
    )
models = lazy_text.fit(x_train, x_test, y_train, y_test)


Label Analysis
| Classes             | Weights              |
|--------------------:|---------------------:|
| tech                | 0.8725490196078431   |
| politics            | 1.1528497409326426   |
| sport               | 1.0671462829736211   |
| entertainment       | 0.8708414872798435   |
| business            | 1.1097256857855362   |

 Result Analysis
| Model                         | Accuracy            | Balanced Accuracy   | F1 Score            | Custom Metric Score | Time Taken          |
| ----------------------------: | -------------------:| -------------------:| -------------------:| -------------------:| -------------------:|
| AdaBoostClassifier            | 0.7260479041916168  | 0.717737172132769   | 0.7248335989941609  | NA                  | 1.829047679901123   |
| BaggingClassifier             | 0.8817365269461078  | 0.8796633962363677  | 0.8814695332332374  | NA                  | 3.5215072631835938  |
| BernoulliNB                   | 0.9535928143712575  | 0.9505929193425733  | 0.9533647387436917  | NA                  | 0.020041465759277344|
| CalibratedClassifierCV        | 0.9760479041916168  | 0.9760018220340847  | 0.9755904096436046  | NA                  | 0.4990670680999756  |
| ComplementNB                  | 0.9760479041916168  | 0.9752329192546583  | 0.9754237510855159  | NA                  | 0.013598203659057617|
| DecisionTreeClassifier        | 0.8532934131736527  | 0.8473956671194278  | 0.8496464898940103  | NA                  | 0.478792667388916   |
| DummyClassifier               | 0.2155688622754491  | 0.2                 | 0.07093596059113301 | NA                  | 0.008046865463256836|
| ExtraTreeClassifier           | 0.7275449101796407  | 0.7253518459908658  | 0.7255575847020816  | NA                  | 0.026398658752441406|
| ExtraTreesClassifier          | 0.9655688622754491  | 0.9635363285903302  | 0.9649837485086689  | NA                  | 1.6907336711883545  |
| GradientBoostingClassifier    | 0.9565868263473054  | 0.9543725191544354  | 0.9554606292723953  | NA                  | 39.16400766372681   |
| KNeighborsClassifier          | 0.938622754491018   | 0.9370053693959814  | 0.9367294513157219  | NA                  | 0.14803171157836914 |
| LinearSVC                     | 0.9745508982035929  | 0.974262691599302   | 0.9740343976103922  | NA                  | 0.10053229331970215 |
| LogisticRegression            | 0.968562874251497   | 0.9668995859213251  | 0.9678778814908909  | NA                  | 2.9565982818603516  |
| LogisticRegressionCV          | 0.9715568862275449  | 0.9708896757262861  | 0.971147482393915   | NA                  | 109.64091444015503  |
| MLPClassifier                 | 0.9760479041916168  | 0.9753381642512078  | 0.9752912960666735  | NA                  | 35.64296746253967   |
| MultinomialNB                 | 0.9700598802395209  | 0.9678795721187026  | 0.9689200656860745  | NA                  | 0.024427413940429688|
| NearestCentroid               | 0.9520958083832335  | 0.9499045135454718  | 0.9515097876015481  | NA                  | 0.024636268615722656|
| NuSVC                         | 0.9670658682634731  | 0.9656159420289855  | 0.9669719954040374  | NA                  | 8.287142515182495   |
| PassiveAggressiveClassifier   | 0.9775449101796407  | 0.9772388820754925  | 0.9770812340935414  | NA                  | 0.10332632064819336 |
| Perceptron                    | 0.9775449101796407  | 0.9769254658385094  | 0.9768161404324825  | NA                  | 0.07216000556945801 |
| RandomForestClassifier        | 0.9625748502994012  | 0.9605135542632081  | 0.9624462948504477  | NA                  | 1.2427525520324707  |
| RidgeClassifier               | 0.9775449101796407  | 0.9769254658385093  | 0.9769176825464448  | NA                  | 0.17272400856018066 |
| SGDClassifier                 | 0.9700598802395209  | 0.9695007868373973  | 0.969787370271274   | NA                  | 0.13134551048278809 |
| SVC                           | 0.9715568862275449  | 0.9703778467908902  | 0.9713021262026043  | NA                  | 8.388679027557373   |

Result of each estimator is stored in models which is a list and each trained estimator is also returned which can be used further for analysis.

confusion matrix and classification reports are also part of the models if they are needed.

print(models[0])
{
    'name': 'AdaBoostClassifier',
    'accuracy': 0.7260479041916168,
    'balanced_accuracy': 0.717737172132769,
    'f1_score': 0.7248335989941609,
    'custom_metric_score': 'NA',
    'time': 1.829047679901123,
    'model': AdaBoostClassifier(),
    'confusion_matrix': array([
        [ 89,   5,  12,  35,   3],
        [  8,  58,   5,  44,   0],
        [  5,   2, 108,  10,   1],
        [  5,   7,   5, 138,   2],
        [ 25,   5,   1,   3,  92]]),
 'classification_report':
 """
            precision    recall  f1-score   support
        0       0.67      0.62      0.64       144
        1       0.75      0.50      0.60       115
        2       0.82      0.86      0.84       126
        3       0.60      0.88      0.71       157
        4       0.94      0.73      0.82       126
 accuracy                           0.73       668
 macro avg       0.76      0.72     0.72       668
 weighted avg    0.75      0.73     0.72       668'}

Custom metrics

LazyText also support custom metric for evaluation, this metric can be set up like following

from lazytext.supervised import LazyTextPredict
# Custom metric
def my_custom_metric(y_true, y_pred):

    ...do your stuff

    return score


lazy_text = LazyTextPredict(custom_metric=my_custom_metric)
lazy_text.fit(X_train, X_test, y_train, y_test)

If the signature of the custom metric function does not match with what is given above, then even though the custom metric is provided, it will be ignored.

Custom model parameters

LazyText also support providing parameters to the esitmators. For this just provide a dictornary of the parameters as shown below and those following arguments will be applied to the desired estimator.

In the following example I want to apply/change the default parameters of SVC classifier.

LazyText will fit all the models but only change the default parameters for SVC in the following case.

from lazytext.supervisd
custom_parameters = [
    {
        "name": "SVC",
        "parameters": {
            "C": 0.5,
            "kernel": 'poly',
            "degree": 5
        }
    }
]


l = LazyTextPredict(
    classification_type="multiclass",
    custom_parameters=custom_parameters
    )
l.fit(x_train, x_test, y_train, y_test)
You might also like...
Repository containing the code for An-Gocair text normaliser

Scottish Gaelic Text Normaliser The following project contains the code and resources for the Scottish Gaelic text normalisation project. The repo can

Code Jam for creating a text-based adventure game engine and custom worlds

Text Based Adventure Jam Author: Devin McIntyre Our goal is two-fold: Create a text based adventure game engine that can parse a standard file format

Microsoft's Cascadia Code font customized to my liking.

Microsoft's Cascadia Code font customized to my liking. Also includes some simple batch patch and bake scripts to batch patch glyphs and bake font features into fonts!

Hamming code generation, error detection & correction.

Hamming code generation, error detection & correction.

Simple python program to auto credit your code, text, book, whatever!

Credit Simple python program to auto credit your code, text, book, whatever! Setup First change credit_text to whatever text you would like to credit

A minimal code sceleton for a textadveture parser written in python.

Textadventure sceleton written in python Use with a map file generated on https://www.trizbort.io Use the following Sockets for walking directions: n

Idea is to build a model which will take keywords as inputs and generate sentences as outputs.
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

The sequel to SquidNet. It has many of the previous features that were in the original script, however a lot of the functions that do not serve much functionality have been removed.

SquidNet2 The sequel to SquidNet. It has many of the previous features that were in the original script, however a lot of the functions that do not se

A python script providing an idea of how a MindSphere application, e.g., a dashboard, can be displayed around the clock without the need of manual re-authentication on enforced session expiration

A python script providing an idea of how a MindSphere application, e.g., a dashboard, can be displayed around the clock without the need of manual re-authentication on enforced session expiration

A concept I came up which ditches the idea of
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Ubuntu env build; Nginx build; DB build;

Deploy 介绍 Deploy related scripts bitnami Dependencies Ubuntu openssl envsubst docker v18.06.3 docker-compose init base env upload https://gitlab-runn

Aggrokatz is an aggressor plugin extension for Cobalt Strike which enables pypykatz to interface with the beacons remotely and allows it to parse LSASS dump files and registry hive files to extract credentials and other secrets stored without downloading the file and without uploading any suspicious code to the beacon. A :baby: buddy to help caregivers track sleep, feedings, diaper changes, and tummy time to learn about and predict baby's needs without (as much) guess work.
A :baby: buddy to help caregivers track sleep, feedings, diaper changes, and tummy time to learn about and predict baby's needs without (as much) guess work.

Baby Buddy A buddy for babies! Helps caregivers track sleep, feedings, diaper changes, tummy time and more to learn about and predict baby's needs wit

Lazymux is a tool installer that is specially made for termux user which provides a lot of tool mainly used tools in termux and its easy to use
Lazymux is a tool installer that is specially made for termux user which provides a lot of tool mainly used tools in termux and its easy to use

Lazymux is a tool installer that is specially made for termux user which provides a lot of tool mainly used tools in termux and its easy to use, Lazymux install any of the given tools provided by it from itself with just one click, and its often get updated.

When doing audio and video sentiment recognition, I found that a lot of code is duplicated, often a function in different time debugging for a long time, based on this problem, I want to manage all the previous work, organized into an open source library can be iterative. For their own use and others. PathPicker accepts a wide range of input -- output from git commands, grep results, searches -- pretty much anything.After parsing the input, PathPicker presents you with a nice UI to select which files you're interested in. After that you can open them in your favorite editor or execute arbitrary commands.
A simple script which allows you to see how much GEXP you earned for playing in the last Minecraft Hypixel server session

Project Landscape A simple script which allows you to see how much GEXP you earned for playing in the Minecraft Server Hypixel Usage Install python 3.

Ross Virtual Assistant is a programme which can play Music, search Wikipedia, open Websites and much more.

Ross-Virtual-Assistant Ross Virtual Assistant is a programme which can play Music, search Wikipedia, open Websites and much more. Installation Downloa

Releases(0.0.2)
Owner
Jay Vala
Data Scientist at scoutbee
Jay Vala
Etranslate is a free and unlimited python library for transiting your texts

Etranslate is a free and unlimited python library for transiting your texts

Abolfazl Khalili 16 Sep 13, 2022
An experimental Fang Song style Chinese font generated with skeleton-tracing and pix2pix

An experimental Fang Song style Chinese font generated with skeleton-tracing and pix2pix, with glyphs based on cwTeXFangSong. The font is optimised fo

Lingdong Huang 98 Jan 07, 2023
box is a text-based visual programming language inspired by Unreal Engine Blueprint function graphs.

Box is a text-based visual programming language inspired by Unreal Engine blueprint function graphs. $ cat factorial.box ┌─ƒ(Factorial)───┐

Pranav 104 Dec 24, 2022
Code Jam for creating a text-based adventure game engine and custom worlds

Text Based Adventure Jam Author: Devin McIntyre Our goal is two-fold: Create a text based adventure game engine that can parse a standard file format

HTTPChat 4 Dec 26, 2021
The Scary Story - A Text Adventure

This is a text adventure which I made in python 3. This is one of my first big projects so any feedback would be greatly appreciated.

2 Feb 20, 2022
a python package that lets you add custom colors and text formatting to your scripts in a very easy way!

colormate Python script text formatting package What is colormate? colormate is a python library that lets you add text formatting to your scripts, it

Rodrigo 2 Dec 14, 2022
An online markdown resume template project, based on pywebio

An online markdown resume template project, based on pywebio

极简XksA 5 Nov 10, 2022
Repository containing the code for An-Gocair text normaliser

Scottish Gaelic Text Normaliser The following project contains the code and resources for the Scottish Gaelic text normalisation project. The repo can

3 Jun 28, 2022
You can encode and decode base85, ascii85, base64, base32, and base16 with this tool.

You can encode and decode base85, ascii85, base64, base32, and base16 with this tool.

8 Dec 20, 2022
Convert English text to IPA using the toPhonetic

Installation: Windows python -m pip install text2ipa macOS sudo pip3 install text2ipa Linux pip install text2ipa Features Convert English text to I

Joseph Quang 3 Jun 14, 2022
Hotpotato is a recipe portfolio App that assists users to discover and comment new recipes.

Hotpotato Hotpotato is a recipe portfolio App that assists users to discover and comment new recipes. It is a fullstack React App made with a Redux st

Nico G Pierson 13 Nov 05, 2021
Production First and Production Ready End-to-End Keyword Spotting Toolkit

WeKws Production First and Production Ready End-to-End Keyword Spotting Toolkit. The goal of this toolkit it to... Small footprint keyword spotting (K

222 Dec 30, 2022
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
从flomo导出的笔记中生成词云

flomo-word-cloud 从flomo导出的笔记中生成词云 如何使用? 将本项目克隆到你的电脑上,使用如下的命令,安装所需python库 pip install -r requirements.txt 在项目里新建一个file文件夹,把所有从flomo导出的html文件放入其中 运行main

Hannnk 9 Dec 30, 2022
Word and phrase lists in CSV

Word Lists Word and phrase lists in CSV, collected from different sources. Oxford Word Lists: oxford-5k.csv - Oxford 3000 and 5000 oxford-opal.csv - O

Anton Zhiyanov 14 Oct 14, 2022
一个可以可以统计群组用户发言,并且能将聊天内容生成词云的机器人

当前版本 v2.2 更新维护日志 更新维护日志 有问题请加群组反馈 Telegram 交流反馈群组 点击加入 演示 配置要求 内存:1G以上 安装方法 使用 Docker 安装 Docker官方安装

机器人总动员 117 Dec 29, 2022
Making simplex testing clean and simple

Making Simplex Project Testing - Clean and Simple What does this repo do? It organizes the python stack for the coding project What do I need to do in

Mohit Mahajan 1 Jan 30, 2022
A Python package to facilitate research on building and evaluating automated scoring models.

Rater Scoring Modeling Tool Introduction Automated scoring of written and spoken test responses is a growing field in educational natural language pro

ETS 59 Oct 10, 2022
Text Summarizationcls app with python

Text Summarizationcls app This is the repo for the Text Summarization AI Project. It makes use of pre-trained Hugging Face models Packages Used The pa

Edem Gold 1 Oct 23, 2021
This repository contains scripts to control a RGB text fan attached to a Raspberry Pi.

RGB Text Fan Controller This repository contains scripts to control a RGB text fan attached to a Raspberry Pi. Setup The Raspberry Pi and RGB text fan

Luke Prior 1 Oct 01, 2021