Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

Overview

keytotext

pypi Version Downloads Open In Colab Streamlit App API Call Docker Call HuggingFace Documentation Status Code style: black CodeFactor

keytotext

Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

Potential use case can include:

  • Marketing
  • Search Engine Optimization
  • Topic generation etc.
  • Fine tuning of topic modeling models

Model:

Keytotext is based on the Amazing T5 Model: HuggingFace

  • k2t: Model
  • k2t-base: Model
  • mrm8488/t5-base-finetuned-common_gen (by Manuel Romero): Model

Training Notebooks can be found in the Training Notebooks Folder

Note: To add your own model to keytotext Please read Models Documentation

Usage:

Example usage: Open In Colab

Example Notebooks can be found in the Notebooks Folder

pip install keytotext

carbon (3)

Trainer:

Keytotext now has a trainer class than be used to train and finetune any T5 based model on new data. Updated Trainer docs here: Docs

Trainer example here: Open In Colab

from keytotext import trainer

carbon (6)

UI:

UI: Streamlit App

pip install streamlit-tags

This uses a custom streamlit component built by me: GitHub

image

API:

API: API Call Docker Call

The API is hosted in the Docker container and it can be run quickly. Follow instructions below to get started

docker pull gagan30/keytotext

docker run -dp 8000:8000 gagan30/keytotext

This will start the api at port 8000 visit the url below to get the results as below:

http://localhost:8000/api?data=["India","Capital","New Delhi"]

k2t_json

Note: The Hosted API is only available on demand

BibTex:

To quote keytotext please use this citation

@misc{bhatia, 
      title={keytotext},
      url={https://github.com/gagan3012/keytotext}, 
      journal={GitHub}, 
      author={Bhatia, Gagan}
}

References

Articles about keytotext:

Comments
  • ERROR: Could not find a version that satisfies the requirement keytotext (from versions: none)

    ERROR: Could not find a version that satisfies the requirement keytotext (from versions: none)

    Hi,

    I tried to install keytotext via pip install keytotext --upgrade in local machine.

    but came across the following :

    ERROR: Could not find a version that satisfies the requirement keytotext (from versions: none)
    ERROR: No matching distribution found for keytotext
    

    My pip version is the latest. However, the above works just fine in colab. Please guide me through the fix?

    opened by abhijithneilabraham 6
  • Add finetuning model to keytotext

    Add finetuning model to keytotext

    Is your feature request related to a problem? Please describe. Its difficult to use it without fine-tuning on new corpus so we need to build script to finetune it on new corpus

    enhancement good first issue 
    opened by gagan3012 2
  • "Oh no." ?

    "Error running app. If this keeps happening, please file an issue."

    Ok,...sure? I know nothing about this app.

    Just saw your tweet, clicked the link to this repo, then clicked the link on the side. Got that message. Now what?

    Chrome browser, Linux.

    opened by drscotthawley 2
  • Add Citations

    Add Citations

    Is your feature request related to a problem? Please describe. Inspirations: https://towardsdatascience.com/data-to-text-generation-with-t5-building-a-simple-yet-advanced-nlg-model-b5cce5a6df45

    Describe the solution you'd like A clear and concise description of what you want to happen.

    Describe alternatives you've considered A clear and concise description of any alternative solutions or features you've considered.

    Additional context Add any other context or screenshots about the feature request here.

    opened by gagan3012 1
  • Adding new models to keytotext

    Adding new models to keytotext

    Is your feature request related to a problem? Please describe. Adding new models to keytotext: https://huggingface.co/mrm8488/t5-base-finetuned-common_gen

    Describe the solution you'd like A clear and concise description of what you want to happen.

    Describe alternatives you've considered A clear and concise description of any alternative solutions or features you've considered.

    Additional context Add any other context or screenshots about the feature request here.

    enhancement good first issue 
    opened by gagan3012 1
  • Inference API for Keytotext

    Inference API for Keytotext

    Is your feature request related to a problem? Please describe. It is difficult to host the UI on streamlit without API

    Describe the solution you'd like Inference API

    enhancement good first issue 
    opened by gagan3012 1
  • Create Better UI

    Create Better UI

    Is your feature request related to a problem? Please describe. The current UI is not functional It needs to be fixed

    Describe the solution you'd like Better UI with a nicer design

    enhancement 
    opened by gagan3012 1
  • Add `st.cache` to load model

    Add `st.cache` to load model

    Hi @gagan3012,

    Johannes from the Streamlit team here :) I am currently investigating why apps run over the resource limits of Streamlit Sharing and saw that your app was affected in the past few days.

    Thought I'd send you a small PR which should fix this. You've already been on a good way with using st.cache but it gets even better if you use it once more to load the model. This makes sure the model and tokenizer are only loaded once, which should make the app consume less memory (and not run into resource limits again! Plus, I've seen that it also works a bit faster now ;).

    Hope this works for you and let me know if you have any other questions! 🎈

    Cheers, Johannes

    opened by jrieke 1
  • ValueError: transformers.models.auto.__spec__ is None

    ValueError: transformers.models.auto.__spec__ is None

    'from keytotext import pipeline'

    While running the above line, it is showing this error . "ValueError: transformers.models.auto.spec is None"

    opened by varunakk 0
  • Update README.md

    Update README.md

    Description

    Motivation and Context

    How Has This Been Tested?

    Screenshots (if appropriate):

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)

    Checklist:

    • [ ] My code follows the code style of this project.
    • [ ] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [ ] I have read the CONTRIBUTING document.
    opened by gagan3012 0
  • Update trainer.py

    Update trainer.py

    Description

    Motivation and Context

    How Has This Been Tested?

    Screenshots (if appropriate):

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)

    Checklist:

    • [ ] My code follows the code style of this project.
    • [ ] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [ ] I have read the CONTRIBUTING document.
    opened by gagan3012 0
  • Pipeline error on fresh install

    Pipeline error on fresh install

    Hi I'm getting this on a first run and fresh install

    Global seed set to 42 Traceback (most recent call last): File "C:\Users\skint\PycharmProjects\spacynd2\testdata.py", line 1, in <module> from keytotext import pipeline File "C:\Users\skint\venv\lib\site-packages\keytotext\__init__.py", line 11, in <module> from .dataset import make_dataset File "C:\Users\skint\venv\lib\site-packages\keytotext\dataset.py", line 1, in <module> from cv2 import randShuffle ModuleNotFoundError: No module named 'cv2'

    opened by skintflickz 0
  • New TypeError: __init__() got an unexpected keyword argument 'progress_bar_refresh_rate'

    New TypeError: __init__() got an unexpected keyword argument 'progress_bar_refresh_rate'

    I have imported the model and necessary libraries. I am getting the below error in google colab. I have used this model earlier also few months back and it was working fine. This is the new issue I am facing recently with the same code.


    TypeError: init() got an unexpected keyword argument 'progress_bar_refresh_rate'

    Imported libraries:

    !pip install keytotext --upgrade !sudo apt-get install git-lfs

    from keytotext import trainer

    Training Model:

    model = trainer() model.from_pretrained(model_name="t5-small") model.train(train_df=df_train_final, test_df=df_test, batch_size=3, max_epochs=5,use_gpu=True) model.save_model()

    Have attached error screenshot

    • OS: Windows
    • Browser Chrome Error
    opened by aishwaryapisal9 2
  • Update trainer.py

    Update trainer.py

    Delete progress_bar_refresh_rate in trainer.py

    Description

    delete progress_bar_refresh_rate=5, since this keyword argument is no longer supported by the latest version (1.7.0) of PyTorch.Lightning.Trainer module

    Motivation and Context

    having this argument fails the training process

    How Has This Been Tested?

    Ran key to text on the custom dataset before and after August 2nd, 2022. Changes in the new version of Pytorch Lightning's Trainer were put into effect on that date where the above argument was removed and hence, the custom training failed since that day.

    Screenshots (if appropriate):

    Types of changes

    • [x] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)

    Checklist:

    • [x] My code follows the code style of this project.
    • [x] My change requires a change to the documentation.
    • [ ] I have updated the documentation accordingly.
    • [ ] I have read the CONTRIBUTING document.
    opened by anath2110benten 0
  • Why is cv2 required?

    Why is cv2 required?

    https://github.com/gagan3012/keytotext/blob/6f807b940f5e2fdeb755ed085b40af7c0fa5e87e/keytotext/dataset.py#L1

    I'm using this framework to generate text from knowlege graph. Python interpreter keeps throwing "cv2 not installed" exception. Looks like the pip package doesn't contains cv2 as dependancy. I tried to delete this line in source code, the model works well. Is this line necessary for this project? Concerning about adding opencv to pip package? Thanks for your concern.

    opened by ChunxuYang 0
  • Hi, I notice that given the same input keywords, across different runs, the generated text are the same, even setting different seeds by 'pl.seed_everything(..)'.

    Hi, I notice that given the same input keywords, across different runs, the generated text are the same, even setting different seeds by 'pl.seed_everything(..)'.

    Is your feature request related to a problem? Please describe. A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]

    Describe the solution you'd like A clear and concise description of what you want to happen.

    Describe alternatives you've considered A clear and concise description of any alternative solutions or features you've considered.

    Additional context Add any other context or screenshots about the feature request here.

    opened by RuiFeiHe 6
Releases(v1.5.0)
Owner
Gagan Bhatia
Software Developer | Machine Learning Enthusiast
Gagan Bhatia
neural network based speaker embedder

Content What is deepaudio-speaker? Installation Get Started Model Architecture How to contribute to deepaudio-speaker? Acknowledge What is deepaudio-s

20 Dec 29, 2022
Using BERT-based models for toxic span detection

SemEval 2021 Task 5: Toxic Spans Detection: Task: Link to SemEval-2021: Task 5 Toxic Span Detection is https://competitions.codalab.org/competitions/2

Ravika Nagpal 1 Jan 04, 2022
A simple Streamlit App to classify swahili news into different categories.

Swahili News Classifier Streamlit App A simple app to classify swahili news into different categories. Installation Install all streamlit requirements

Davis David 4 May 01, 2022
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023
Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables

Mortgage-Application-Analysis Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables: age, in

1 Jan 29, 2022
🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

Hugging Face 15k Jan 02, 2023
VampiresVsWerewolves - Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition

VampiresVsWerewolves Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition. Our Algorithm finish

Shawn 1 Jan 21, 2022
Search with BERT vectors in Solr and Elasticsearch

Search with BERT vectors in Solr and Elasticsearch

Dmitry Kan 123 Dec 29, 2022
Word2Wave: a framework for generating short audio samples from a text prompt using WaveGAN and COALA.

Word2Wave is a simple method for text-controlled GAN audio generation. You can either follow the setup instructions below and use the source code and CLI provided in this repo or you can have a play

Ilaria Manco 91 Dec 23, 2022
Search msDS-AllowedToActOnBehalfOfOtherIdentity

前言 现在进行RBCD的攻击手段主要是搜索mS-DS-CreatorSID,如果机器的创建者是我们可控的话,那就可以修改对应机器的msDS-AllowedToActOnBehalfOfOtherIdentity,利用工具SharpAllowedToAct-Modify 那我们索性也试试搜索所有计算机

Jumbo 26 Dec 05, 2022
NLP Core Library and Model Zoo based on PaddlePaddle 2.0

PaddleNLP 2.0拥有丰富的模型库、简洁易用的API与高性能的分布式训练的能力,旨在为飞桨开发者提升文本建模效率,并提供基于PaddlePaddle 2.0的NLP领域最佳实践。

6.9k Jan 01, 2023
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.09

Keon Lee 142 Jan 06, 2023
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 169 Jan 05, 2023
超轻量级bert的pytorch版本,大量中文注释,容易修改结构,持续更新

bert4pytorch 2021年8月27更新: 感谢大家的star,最近有小伙伴反映了一些小的bug,我也注意到了,奈何这个月工作上实在太忙,更新不及时,大约会在9月中旬集中更新一个只需要pip一下就完全可用的版本,然后会新添加一些关键注释。 再增加对抗训练的内容,更新一个完整的finetune

muqiu 317 Dec 18, 2022
Plugin repository for Macast

Macast-plugins Plugin repository for Macast. How to use third-party player plugin Download Macast from GitHub Release. Download the plugin you want fr

109 Jan 04, 2023
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
AI-powered literature discovery and review engine for medical/scientific papers

AI-powered literature discovery and review engine for medical/scientific papers paperai is an AI-powered literature discovery and review engine for me

NeuML 819 Dec 30, 2022
A fast and lightweight python-based CTC beam search decoder for speech recognition.

pyctcdecode A fast and feature-rich CTC beam search decoder for speech recognition written in Python, providing n-gram (kenlm) language model support

Kensho 315 Dec 21, 2022
A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022