A natural language processing model for sequential sentence classification in medical abstracts.

Overview

NLP PubMed Medical Research Paper Abstract (Randomized Controlled Trial)

A natural language processing model for sequential sentence classification in medical abstracts.

  • The objective is to build a deep learning model which makes medical research paper abstract easier to read.

  • Dataset used in this project is the PubMed 200k RCT Dataset for Sequential Sentence Classification in Medical Abstract by Cornell University: https://arxiv.org/abs/1710.06071

  • The initial deep learning research paper was built with the PubMed 200k RCT.

  • Dataset has about 200,000 labelled Randomized Control Trial abstracts.

  • The goal of the project was to build NLP models with the dataset to classify sentences in sequential order.

  • As the RCT research papers with unstructured abstracts slows down researchers navigating the literature.

  • The unstructured abstracts are sometimes hard to read and understand especially when it can disrupt time management and deadlines.

  • This NLP model can classify the abstract sentences into its respective roles:

     - Objective
     - Methods 
     - Results
     - Conclusions.
    
  • The PubMed 200k RCT Dataset - https://github.com/Franck-Dernoncourt/pubmed-rct

Results after NLP processing, sample model prediction from the experiment:

Source

Name: Randomized Controlled Trial: RCT of a manualized social treatment for high-functioning autism spectrum disorders. (by Christopher Lopata, Marcus L Thomeer, etc.) https://pubmed.ncbi.nlm.nih.gov/20232240/

Abstract: "This RCT examined the efficacy of a manualized social intervention for children with HFASDs. Participants were randomly assigned to treatment or wait-list conditions. Treatment included instruction and therapeutic activities targeting social skills, face-emotion recognition, interest expansion, and interpretation of non-literal language. A response-cost program was applied to reduce problem behaviors and foster skills acquisition. Significant treatment effects were found for five of seven primary outcome measures (parent ratings and direct child measures). Secondary measures based on staff ratings (treatment group only) corroborated gains reported by parents. High levels of parent, child and staff satisfaction were reported, along with high levels of treatment fidelity. Standardized effect size estimates were primarily in the medium and large ranges and favored the treatment group."

NLP processed abstract after modelling (Model's Predicted Abstract which makes Abstract easier to read)

OBJECTIVE: This RCT examined the efficacy of a manualized social intervention for children with HFASDs.

METHODS: Participants were randomly assigned to treatment or wait-list conditions.

METHODS: Treatment included instruction and therapeutic activities targeting social skills, face-emotion recognition, interest expansion, and interpretation of non-literal language.

METHODS: A response-cost program was applied to reduce problem behaviors and foster skills acquisition.

RESULTS: Significant treatment effects were found for five of seven primary outcome measures (parent ratings and direct child measures).

METHODS: Secondary measures based on staff ratings (treatment group only) corroborated gains reported by parents.

RESULTS: High levels of parent, child and staff satisfaction were reported, along with high levels of treatment fidelity.

RESULTS: Standardized effect size estimates were primarily in the medium and large ranges and favored the treatment group.

Owner
Hemanth Chandran
Record Producer. Data Science. Machine Learning. GANs. Dev
Hemanth Chandran
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

303 Dec 17, 2022
An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode.

WordleSolver An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode. How to use the program Copy this proje

Akil Selvan Rajendra Janarthanan 3 Mar 02, 2022
A Lightweight NLP Data Loader for All Deep Learning Frameworks in Python

LineFlow: Framework-Agnostic NLP Data Loader in Python LineFlow is a simple text dataset loader for NLP deep learning tasks. LineFlow was designed to

TofuNLP 177 Jan 04, 2023
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents

BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents. Given the OCR results of the document image, which

Clova AI Research 94 Dec 30, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.0.1 1.1.0 1.2.0 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 ubuntu18/python3.8/pip ubuntu18

ESPnet 5.9k Jan 03, 2023
Azure Text-to-speech service for Home Assistant

Azure Text-to-speech service for Home Assistant The Azure text-to-speech platform uses online Azure Text-to-Speech cognitive service to read a text wi

Yassine Selmi 2 Aug 06, 2022
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Megagon Labs 160 Dec 23, 2022
Adversarial Examples for Extreme Multilabel Text Classification

Adversarial Examples for Extreme Multilabel Text Classification The code is adapted from the source codes of BERT-ATTACK [1], APLC_XLNet [2], and Atte

1 May 14, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
AMUSE - financial summarization

AMUSE AMUSE - financial summarization Unzip data.zip Train new model: python FinAnalyze.py --task train --start 0 --count how many files,-1 for all

1 Jan 11, 2022
I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive

I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive. Obstacles like sentence negation, sarcasm, terseness, language ambiguity, and many others

1 Jan 13, 2022
Implementation of the Hybrid Perception Block and Dual-Pruned Self-Attention block from the ITTR paper for Image to Image Translation using Transformers

ITTR - Pytorch Implementation of the Hybrid Perception Block (HPB) and Dual-Pruned Self-Attention (DPSA) block from the ITTR paper for Image to Image

Phil Wang 17 Dec 23, 2022
CATs: Semantic Correspondence with Transformers

CATs: Semantic Correspondence with Transformers For more information, check out the paper on [arXiv]. Training with different backbones and evaluation

74 Dec 10, 2021
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 227 Jan 02, 2023
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates

GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an

Vibhor Agarwal 2 Jun 30, 2022
Script to generate VAD dataset used in Asteroid recipe

About the dataset LibriVAD is an open source dataset for voice activity detection in noisy environments. It is derived from LibriSpeech signals (clean

11 Sep 15, 2022