Python Implementation of Scalable In-Memory Updatable Bitmap Indexing

Related tags

Data AnalysisPyUpBit
Overview

Contributors Forks Stargazers Issues LinkedIn


PyUpBit

CS490 Large Scale Data Analytics — Implementation of Updatable Compressed Bitmap Indexing
Paper

Table of Contents
  1. About The Project
  2. Usage
  3. Contact
  4. Acknowledgements

About The Project

Bitmaps are common data structures used in database implemen- tations due to having fast read performance. Often they are used in applications in need of common equality and selective range queries. Essentially, they store a bit-vector for each value in the domain of each attribute to keep track of large scale data files. How- ever, the main drawbacks associated with bitmap indexes are its encoding and decoding performances of bit-vectors. Currently the state of art update-optimized bitmap index, update conscious bitmaps, are able to support extremely efficient deletes and have improved update speeds by treating updates as delete then insert. Update conscious bitmaps make use of an additional bit-vector, called the existence bit-vector, to keep track of whether or not a value has been updated. By initializing all values of the existence bit-vector to 1, the data for each attribute associated with each row in the existence bit-vector is validated and presented. If a value needs to be deleted, the corresponding row in the existence bit-vector gets changed to 0, invalidating any data associated with that row. This new method in turn allows for very efficient deletes. To add on, updates are then performed as a delete operation, then an insert operation in to the end of the bit-vector. However, update conscious bitmaps do not scale well with more data. As more and more data gets updated and inserted, the run time increases significantly as well. Because update queries are out-of- place and increase size of vectors, read queries become increasingly expensive and time consuming. Furthermore, as the number of updates and deletes increases, the bit-vector becomes less and less compressible. This brings us to updateable Bitmaps (UpBit). According to the paper, UpBit: Scalable In-Memory Updatable Bitmap Indexing, re- searchers Manos Athanassoulis, Zheng Yan, and Stratos Idreos developed a new bitmap structure that improved the write per- formance of bitmaps without sacrificing read performance. The main differentiating point of UpBit is its use of an update bit vector for every value in the domain of an attribute that keeps track of updated values. This allows for faster write performance without sacrificing read performance. Based on this paper, we implemented UpBit and compared it to our implementation of update conscious bitmaps to compare and test the performances of both methods.

Usage

We used PyCharm to conduct our tests, /ucb, /upbit for algorithms, /tests for running testing scripts, and rest of the files for compression for memory usage improvement as well as creating and visualizing data.

Contact

Daniel Park - @h1yung - [email protected]

Acknowledgements

  • Original Paper
  • Winston Chen
  • Gregory Chininis
  • Daniel Hooks
  • Michael Lee
Owner
Hyeong Kyun (Daniel) Park
I like coding
Hyeong Kyun (Daniel) Park
This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP.

Overview Welcome to the Step-X repository. This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP. Be

Keanu Pang 0 Jan 20, 2022
Analyzing Covid-19 Outbreaks in Ontario

My group and I took Covid-19 outbreak statistics from ontario, and analyzed them to find different patterns and future predictions for the virus

Vishwaajeeth Kamalakkannan 0 Jan 20, 2022
Flood modeling by 2D shallow water equation

hydraulicmodel Flood modeling by 2D shallow water equation. Refer to Hunter et al (2005), Bates et al. (2010). Diffusive wave approximation Local iner

6 Nov 30, 2022
Data and code accompanying the paper Politics and Virality in the Time of Twitter

Politics and Virality in the Time of Twitter Data and code accompanying the paper Politics and Virality in the Time of Twitter. In specific: the code

Cardiff NLP 3 Jul 02, 2022
Reading streams of Twitter data, save them to Kafka, then process with Kafka Stream API and Spark Streaming

Using Streaming Twitter Data with Kafka and Spark Reading streams of Twitter data, publishing them to Kafka topic, process message using Kafka Stream

Rustam Zokirov 1 Dec 06, 2021
Time ranges with python

timeranges Time ranges. Read the Docs Installation pip timeranges is available on pip: pip install timeranges GitHub You can also install the latest v

Micael Jarniac 2 Sep 01, 2022
Picka: A Python module for data generation and randomization.

Picka: A Python module for data generation and randomization. Author: Anthony Long Version: 1.0.1 - Fixed the broken image stuff. Whoops What is Picka

Anthony 108 Nov 30, 2021
Repository created with LinkedIn profile analysis project done

EN/en Repository created with LinkedIn profile analysis project done. The datase

Mayara Canaver 4 Aug 06, 2022
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Damien Farrell 81 Dec 26, 2022
2019 Data Science Bowl

Kaggle-2019-Data-Science-Bowl-Solution - Here i present my solution to kaggle 2019 data science bowl and how i improved it to win a silver medal in that competition.

Deepak Nandwani 1 Jan 01, 2022
Big Data & Cloud Computing for Oceanography

DS2 Class 2022, Big Data & Cloud Computing for Oceanography Home of the 2022 ISblue Big Data & Cloud Computing for Oceanography class (IMT-A, ENSTA, I

Ocean's Big Data Mining 5 Mar 19, 2022
WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

Institute for Complex Systems (ICS), Johannes Kepler University Linz 40 Dec 13, 2022
Stitch together Nanopore tiled amplicon data without polishing a reference

Stitch together Nanopore tiled amplicon data using a reference guided approach Tiled amplicon data, like those produced from primers designed with pri

Amanda Warr 14 Aug 30, 2022
This python script allows you to manipulate the audience data from Sl.ido surveys

Slido-Automated-VoteBot This python script allows you to manipulate the audience data from Sl.ido surveys Since Slido blocks interference from automat

Pranav Menon 1 Jan 24, 2022
Hidden Markov Models in Python, with scikit-learn like API

hmmlearn hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and

2.7k Jan 03, 2023
A set of procedures that can realize covid19 virus detection based on blood.

A set of procedures that can realize covid19 virus detection based on blood.

Nuyoah-xlh 3 Mar 07, 2022
INF42 - Topological Data Analysis

TDA INF421(Conception et analyse d'algorithmes) Projet : Topological Data Analysis SphereMin Etant donné un nuage des points, ce programme contient de

2 Jan 07, 2022
Flenser is a simple, minimal, automated exploratory data analysis tool.

Flenser Have you ever been handed a dataset you've never seen before? Flenser is a simple, minimal, automated exploratory data analysis tool. It runs

John McCambridge 79 Sep 20, 2022
SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

SNV Pipeline SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

East Genomics 1 Nov 02, 2021
Programmatically access the physical and chemical properties of elements in modern periodic table.

API to fetch elements of the periodic table in JSON format. Uses Pandas for dumping .csv data to .json and Flask for API Integration. Deployed on "pyt

the techno hack 3 Oct 23, 2022