Python Implementation of Scalable In-Memory Updatable Bitmap Indexing

Related tags

Data AnalysisPyUpBit
Overview

Contributors Forks Stargazers Issues LinkedIn


PyUpBit

CS490 Large Scale Data Analytics — Implementation of Updatable Compressed Bitmap Indexing
Paper

Table of Contents
  1. About The Project
  2. Usage
  3. Contact
  4. Acknowledgements

About The Project

Bitmaps are common data structures used in database implemen- tations due to having fast read performance. Often they are used in applications in need of common equality and selective range queries. Essentially, they store a bit-vector for each value in the domain of each attribute to keep track of large scale data files. How- ever, the main drawbacks associated with bitmap indexes are its encoding and decoding performances of bit-vectors. Currently the state of art update-optimized bitmap index, update conscious bitmaps, are able to support extremely efficient deletes and have improved update speeds by treating updates as delete then insert. Update conscious bitmaps make use of an additional bit-vector, called the existence bit-vector, to keep track of whether or not a value has been updated. By initializing all values of the existence bit-vector to 1, the data for each attribute associated with each row in the existence bit-vector is validated and presented. If a value needs to be deleted, the corresponding row in the existence bit-vector gets changed to 0, invalidating any data associated with that row. This new method in turn allows for very efficient deletes. To add on, updates are then performed as a delete operation, then an insert operation in to the end of the bit-vector. However, update conscious bitmaps do not scale well with more data. As more and more data gets updated and inserted, the run time increases significantly as well. Because update queries are out-of- place and increase size of vectors, read queries become increasingly expensive and time consuming. Furthermore, as the number of updates and deletes increases, the bit-vector becomes less and less compressible. This brings us to updateable Bitmaps (UpBit). According to the paper, UpBit: Scalable In-Memory Updatable Bitmap Indexing, re- searchers Manos Athanassoulis, Zheng Yan, and Stratos Idreos developed a new bitmap structure that improved the write per- formance of bitmaps without sacrificing read performance. The main differentiating point of UpBit is its use of an update bit vector for every value in the domain of an attribute that keeps track of updated values. This allows for faster write performance without sacrificing read performance. Based on this paper, we implemented UpBit and compared it to our implementation of update conscious bitmaps to compare and test the performances of both methods.

Usage

We used PyCharm to conduct our tests, /ucb, /upbit for algorithms, /tests for running testing scripts, and rest of the files for compression for memory usage improvement as well as creating and visualizing data.

Contact

Daniel Park - @h1yung - [email protected]

Acknowledgements

  • Original Paper
  • Winston Chen
  • Gregory Chininis
  • Daniel Hooks
  • Michael Lee
Owner
Hyeong Kyun (Daniel) Park
I like coding
Hyeong Kyun (Daniel) Park
Data Competition: automated systems that can detect whether people are not wearing masks or are wearing masks incorrectly

Table of contents Introduction Dataset Model & Metrics How to Run Quickstart Install Training Evaluation Detection DATA COMPETITION The COVID-19 pande

Thanh Dat Vu 1 Feb 27, 2022
Renato 214 Jan 02, 2023
Analyzing Earth Observation (EO) data is complex and solutions often require custom tailored algorithms.

eo-grow Earth observation framework for scaled-up processing in Python. Analyzing Earth Observation (EO) data is complex and solutions often require c

Sentinel Hub 18 Dec 23, 2022
Instant search for and access to many datasets in Pyspark.

SparkDataset Provides instant access to many datasets right from Pyspark (in Spark DataFrame structure). Drop a star if you like the project. 😃 Motiv

Souvik Pratiher 31 Dec 16, 2022
PySpark bindings for H3, a hierarchical hexagonal geospatial indexing system

h3-pyspark: Uber's H3 Hexagonal Hierarchical Geospatial Indexing System in PySpark PySpark bindings for the H3 core library. For available functions,

Kevin Schaich 12 Dec 24, 2022
Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation

Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation Overview Consider the scenario in which advertisement

Manuel Bressan 2 Nov 18, 2021
Additional tools for particle accelerator data analysis and machine information

PyLHC Tools This package is a collection of useful scripts and tools for the Optics Measurements and Corrections group (OMC) at CERN. Documentation Au

PyLHC 3 Apr 13, 2022
PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

Burn Research 4 Oct 13, 2022
A Numba-based two-point correlation function calculator using a grid decomposition

A Numba-based two-point correlation function (2PCF) calculator using a grid decomposition. Like Corrfunc, but written in Numba, with simplicity and hackability in mind.

Lehman Garrison 3 Aug 24, 2022
Reading streams of Twitter data, save them to Kafka, then process with Kafka Stream API and Spark Streaming

Using Streaming Twitter Data with Kafka and Spark Reading streams of Twitter data, publishing them to Kafka topic, process message using Kafka Stream

Rustam Zokirov 1 Dec 06, 2021
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
Developed for analyzing the covariance for OrcVIO

about This repo is developed for analyzing the covariance for OrcVIO environment setup platform ubuntu 18.04 using conda conda env create --file envir

Sean 1 Dec 08, 2021
Improving your data science workflows with

Make Better Defaults Author: Kjell Wooding [email protected] This is the git re

Kjell Wooding 18 Dec 23, 2022
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022
Pandas and Spark DataFrame comparison for humans

DataComPy DataComPy is a package to compare two Pandas DataFrames. Originally started to be something of a replacement for SAS's PROC COMPARE for Pand

Capital One 259 Dec 24, 2022
ped-crash-techvol: Texas Ped Crash Tech Volume Pack

ped-crash-techvol: Texas Ped Crash Tech Volume Pack In conjunction with the Final Report "Identifying Risk Factors that Lead to Increase in Fatal Pede

Network Modeling Center; Center for Transportation Research; The University of Texas at Austin 2 Sep 28, 2022
Python package for analyzing behavioral data for Brain Observatory: Visual Behavior

Allen Institute Visual Behavior Analysis package This repository contains code for analyzing behavioral data from the Allen Brain Observatory: Visual

Allen Institute 16 Nov 04, 2022
Employee Turnover Analysis

Employee Turnover Analysis Submission to the DataCamp competition "Can you help reduce employee turnover?"

Jannik Wiedenhaupt 1 Feb 13, 2022
small package with utility functions for analyzing (fly) calcium imaging data

fly2p Tools for analyzing two-photon (2p) imaging data collected with Vidrio Scanimage software and micromanger. Loading scanimage data relies on scan

Hannah Haberkern 3 Dec 14, 2022
Titanic data analysis for python

Titanic-data-analysis This Repo is an analysis on Titanic_mod.csv This csv file contains some assumed data of the Titanic ship after sinking This full

Hardik Bhanot 1 Dec 26, 2021