take home quiz

Overview

guess the correlation

data inspection

a pretty normal distribution

dist

train/val/test split

splitting amount

.dataset:                150000 instances
├─80%─├─80%─training      96000 instances
│     └─20%─validation    24000 instances
├─20%─testing             30000 instances

after a rough glance at the dataset distribution, considered the dataset is pretty normal distributed and has enough instances to keep the variance low after 80/20 splitting.

splitting method

def _split_dataset(self, split, training=True):
    if split == 0.0:
        return None, None

    # self.correlations_frame = pd.read_csv('path/to/csv_file')
    n_samples = len(self.correlations_frame)

    idx_full = np.arange(n_samples)

    # fix seed for referenceable testing set
    np.random.seed(0)
    np.random.shuffle(idx_full)

    if isinstance(split, int):
        assert split > 0
        assert split < n_samples, "testing set size is configured to be larger than entire dataset."
        len_test = split
    else:
        len_test = int(n_samples * split)

    test_idx = idx_full[0:len_test]
    train_idx = np.delete(idx_full, np.arange(0, len_test))

    if training:
        dataset = self.correlations_frame.ix[train_idx]
    else:
        dataset = self.correlations_frame.ix[test_idx]

    return dataset

training/validation splitting uses the same logic

model inspection

CorrelationModel(
  (features): Sequential(
    (0): Conv2d(1, 16, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2))
    #(0): params: (3*3*1+1) * 16 = 160
    (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    #(1): params: 16 * 2 = 32
    (2): ReLU(inplace=True)
    (3): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2))
    #(4): params: (3*3*16+1) * 32 = 4640
    (5): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    #(5): params: 32 * 2 = 64
    (6): ReLU(inplace=True)
    (7): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (8): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    #(8): params: (3*3*32+1) * 64 = 18496
    (9): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    #(9): params: 64 * 2 = 128
    (10): ReLU(inplace=True)
    (11): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (12): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    #(12): params: (3*3*64+1) * 32 = 18464
    (13): ReLU(inplace=True)
    (14): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (15): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (#15): params: (3*3*32+1) * 16 = 4624
    (16): ReLU(inplace=True)
    (17): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (18): Conv2d(16, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (#18): params: (3*3*16+1) * 8 = 1160
    (19): ReLU(inplace=True)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (linear): Sequential(
    (0): Conv2d(8, 1, kernel_size=(1, 1), stride=(1, 1))
    #(0): params: (8+1) * 1 = 9
    (1): Tanh()
  )
)
Trainable parameters: 47777

loss function

the loss function of choice is smooth_l1, which has the advantages of both l1 and l2 loss

def SmoothL1(yhat, y):                                                  <--- final choice
    return torch.nn.functional.smooth_l1_loss(yhat, y)

def MSELoss(yhat, y):
    return torch.nn.functional.mse_loss(yhat, y)

def RMSELoss(yhat, y):
    return torch.sqrt(MSELoss(yhat, y))

def MSLELoss(yhat, y):
    return MSELoss(torch.log(yhat + 1), torch.log(y + 1))

def RMSLELoss(yhat, y):
    return torch.sqrt(MSELoss(torch.log(yhat + 1), torch.log(y + 1)))

evaluation metric

def mse(output, target):
    # mean square error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        mae = torch.sum(MSELoss(output, target)).item()
    return mae / len(target)

def mae(output, target):
    # mean absolute error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        mae = torch.sum(abs(target-output)).item()
    return mae / len(target)

def mape(output, target):
    # mean absolute percentage error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        mape = torch.sum(abs((target-output)/target)).item()
    return mape / len(target)

def rmse(output, target):
    # root mean square error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        rmse = torch.sum(torch.sqrt(MSELoss(output, target))).item()
    return rmse / len(target)

def msle(output, target):
    # mean square log error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        msle = torch.sum(MSELoss(torch.log(output + 1), torch.log(target + 1))).item()
    return msle / len(target)

def rmsle(output, target):
    # root mean square log error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        rmsle = torch.sum(torch.sqrt(MSELoss(torch.log(output + 1), torch.log(target + 1)))).item()
    return rmsle / len(target)

training result

trainer - INFO -     epoch          : 1
trainer - INFO -     smooth_l1loss  : 0.0029358651146370296
trainer - INFO -     mse            : 9.174910654958997e-05
trainer - INFO -     mae            : 0.04508562459920844
trainer - INFO -     mape           : 0.6447089369893074
trainer - INFO -     rmse           : 0.0008826211761528006
trainer - INFO -     msle           : 0.0002885178522810747
trainer - INFO -     rmsle          : 0.0016459243478796756
trainer - INFO -     val_loss       : 0.000569225614812846
trainer - INFO -     val_mse        : 1.7788300462901436e-05
trainer - INFO -     val_mae        : 0.026543946107228596
trainer - INFO -     val_mape       : 0.48582320946455004
trainer - INFO -     val_rmse       : 0.0005245986936303476
trainer - INFO -     val_msle       : 9.091730712680146e-05
trainer - INFO -     val_rmsle      : 0.0009993902465794235
                    .
                    .
                    .
                    .
                    .
                    .
trainer - INFO -     epoch          : 7                           <--- final model
trainer - INFO -     smooth_l1loss  : 0.00017805844737449661
trainer - INFO -     mse            : 5.564326480453019e-06
trainer - INFO -     mae            : 0.01469234253714482
trainer - INFO -     mape           : 0.2645472921580076
trainer - INFO -     rmse           : 0.0002925463738307978
trainer - INFO -     msle           : 3.3151906652316634e-05
trainer - INFO -     rmsle          : 0.0005688522928685416
trainer - INFO -     val_loss       : 0.00017794455110561102
trainer - INFO -     val_mse        : 5.560767222050344e-06
trainer - INFO -     val_mae        : 0.014510956528286139
trainer - INFO -     val_mape       : 0.25059283276398975
trainer - INFO -     val_rmse       : 0.0002930224982944007
trainer - INFO -     val_msle       : 3.403802761204133e-05
trainer - INFO -     val_rmsle      : 0.0005525556141122554
trainer - INFO - Saving checkpoint: saved/models/correlation/1031_043742/checkpoint-epoch7.pth ...
trainer - INFO - Saving current best: model_best.pth ...
                    .
                    .
                    .
                    .
                    .
                    .
trainer - INFO -     epoch          : 10                           <--- early stop
trainer - INFO -     smooth_l1loss  : 0.00014610137016279624
trainer - INFO -     mse            : 4.565667817587382e-06
trainer - INFO -     mae            : 0.013266990386570494
trainer - INFO -     mape           : 0.24146838792661826
trainer - INFO -     rmse           : 0.00026499629460158757
trainer - INFO -     msle           : 2.77259079665176e-05
trainer - INFO -     rmsle          : 0.0005148174095957074
trainer - INFO -     val_loss       : 0.00018394086218904705
trainer - INFO -     val_mse        : 5.74815194340772e-06
trainer - INFO -     val_mae        : 0.01494487459709247
trainer - INFO -     val_mape       : 0.27262411576509477
trainer - INFO -     val_rmse       : 0.0002979971170425415
trainer - INFO -     val_msle       : 3.1850282267744966e-05
trainer - INFO -     val_rmsle      : 0.0005451643197642019
trainer - INFO - Validation performance didn't improve for 2 epochs. Training stops.

loss graph dist

testing result

Loading checkpoint: saved/models/correlation/model_best.pth ...
Done
Testing set samples: 30000
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 59/59 [00:19<00:00,  3.04it/s]
Testing result:
{'loss': 0.0001722179292468354, 'mse': 6.77461177110672e-07, 'mae': 0.014289384969075522, 'mape': 0.2813985677083333, 'rmse': 3.6473782857259115e-05, 'msle': 3.554690380891164e-06, 'rmsle': 7.881066799163819e-05}
Owner
HR Wu
HR Wu
An advanced NFT Generator

NFT Generator An advanced NFT Generator Free software: GNU General Public License v3 Documentation: https://nft-generator.readthedocs.io. Features TOD

NFT Generator 5 Apr 21, 2022
An implementation to rank your favourite songs from World of Walker

World-Of-Walker-Elo An implementation to rank your favourite songs from Alan Walker's 2021 album World of Walker. Uses the Elo rating system, which is

1 Nov 26, 2021
Tools Elit Adalah Sebuah Script Crack Yang Wajib Tap Yes...

Tools Elit Adalah Sebuah Script Crack Yang Wajib Tap Yes...

Risky [ Zero Tow ] 10 Apr 07, 2022
A tool to assist in code raiding in rust

Kodelock a tool to assist in code raiding in rust This tool is designed to be used on a second monitor. This tools will allow you to see a easily read

3 Oct 27, 2022
Sathal's Python Projects Repository

Sathal's Python Projects Repository Purpose and Motivation I come from a mainly C Programming Language background and have previous classroom experien

Sam 1 Oct 20, 2021
Gmvault: Backup and restore your gmail account

Gmvault: Backup and restore your gmail account Gmvault is a tool for backing up your gmail account and never lose email correspondence. Gmvault is ope

Guillaume Aubert 3.5k Jan 01, 2023
🔵Open many google dorks in a fasted way

Dorkinho 🔵 The author is not responsible for misuse of the tool, use it in good practices like Pentest and CTF OSINT challenges. Dorkinho is a script

SidHawks 2 May 02, 2022
[CVPR 2020] Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition from a Domain Adaptation Perspective

Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition from a Domain Adaptation Perspective [Arxiv] This is PyTorch implementation of th

Abdullah Jamal 22 Nov 19, 2022
E-Paper display loop with plugins

PaperPi V3 NOTE This version of PaperPi is under heavy development and is not ready for the average user. We are working on adding more screen compati

Aaron Ciuffo 34 Dec 30, 2022
My tools box script for sigma

sigma_python_toolbox My tools box script for sigma purpose My goal is not to replace sigma but to put at disposal the scripts that I think to help me

4 Jun 20, 2022
Simple application that does transformation with HPF and LPFs.

Simple application that applies Butterworth, Gaussian & Ideal kernels on HPF and LPFs -aka Frequency Domain Filtering- Upload image from sidebar, set

Merve Noyan 3 Jul 06, 2022
A calculator developed in Python.

Calculadora Uma simples calculadora... ( + − × ÷ ) 💻 Situação do projeto: Projeto finalizado ✔️ 🛠 Tecnologias: Python Tkinter (GUI) ⚙️ Pré-requisito

Arthur V.B.S. 1 Jan 27, 2022
Scripts to integrate DFIR-IRIS, MISP and TimeSketch

Scripts to integrate DFIR-IRIS, MISP and TimeSketch

Koen Van Impe 20 Dec 16, 2022
Simple python code for compile brainfuck program.

py-brainf*ck Just a basic compiled that compiles your brainf*ck codes and gives you informations about memory, used cells, dumped version, logs etc...

4 Jun 13, 2021
The purpose is to have a fairly simple python assignment that introduces the basic features and tools of python

This repository contains the code for the python introduction lab. The purpose is to have a fairly simple python assignment that introduces the basic

1 Jan 24, 2022
Cool Bioinformatics Scripts

Cool Bioinformatics Scripts qqplot You can use this script in two ways read tons of millions of P values from stdin # python zcat pval.txt.gz | qqplo

8 Oct 30, 2022
An AddOn storing wireguard configuration

Wireguard Database Connector Overview Development Status: 0.1.7 (alpha) First of all, I'd like to thank Jared McKnight for wireguard who inspired me t

Markus Neubauer 3 Dec 30, 2021
100 Days of Python Programming

100 days of Python Following the initiative of my friend Helber Belmiro, who is almost done with his 100 days of Java, I have decided to start my 100

Henrique Pereira 19 Nov 08, 2021
Fried Chicken Programming Language

Fried-Chicken Fried Chicken Programming Language How To Run Once downloaded and opened, choose any file for code. Any file extensions work. Just make

Attachment Studios 9 Jul 11, 2022
Plux - A dynamic code loading framework for building plugable Python distributions

Plux plux is the dynamic code loading framework used in LocalStack. Overview The

LocalStack 65 Dec 20, 2022