take home quiz

Overview

guess the correlation

data inspection

a pretty normal distribution

dist

train/val/test split

splitting amount

.dataset:                150000 instances
├─80%─├─80%─training      96000 instances
│     └─20%─validation    24000 instances
├─20%─testing             30000 instances

after a rough glance at the dataset distribution, considered the dataset is pretty normal distributed and has enough instances to keep the variance low after 80/20 splitting.

splitting method

def _split_dataset(self, split, training=True):
    if split == 0.0:
        return None, None

    # self.correlations_frame = pd.read_csv('path/to/csv_file')
    n_samples = len(self.correlations_frame)

    idx_full = np.arange(n_samples)

    # fix seed for referenceable testing set
    np.random.seed(0)
    np.random.shuffle(idx_full)

    if isinstance(split, int):
        assert split > 0
        assert split < n_samples, "testing set size is configured to be larger than entire dataset."
        len_test = split
    else:
        len_test = int(n_samples * split)

    test_idx = idx_full[0:len_test]
    train_idx = np.delete(idx_full, np.arange(0, len_test))

    if training:
        dataset = self.correlations_frame.ix[train_idx]
    else:
        dataset = self.correlations_frame.ix[test_idx]

    return dataset

training/validation splitting uses the same logic

model inspection

CorrelationModel(
  (features): Sequential(
    (0): Conv2d(1, 16, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2))
    #(0): params: (3*3*1+1) * 16 = 160
    (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    #(1): params: 16 * 2 = 32
    (2): ReLU(inplace=True)
    (3): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2))
    #(4): params: (3*3*16+1) * 32 = 4640
    (5): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    #(5): params: 32 * 2 = 64
    (6): ReLU(inplace=True)
    (7): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (8): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    #(8): params: (3*3*32+1) * 64 = 18496
    (9): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    #(9): params: 64 * 2 = 128
    (10): ReLU(inplace=True)
    (11): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (12): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    #(12): params: (3*3*64+1) * 32 = 18464
    (13): ReLU(inplace=True)
    (14): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (15): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (#15): params: (3*3*32+1) * 16 = 4624
    (16): ReLU(inplace=True)
    (17): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (18): Conv2d(16, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (#18): params: (3*3*16+1) * 8 = 1160
    (19): ReLU(inplace=True)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (linear): Sequential(
    (0): Conv2d(8, 1, kernel_size=(1, 1), stride=(1, 1))
    #(0): params: (8+1) * 1 = 9
    (1): Tanh()
  )
)
Trainable parameters: 47777

loss function

the loss function of choice is smooth_l1, which has the advantages of both l1 and l2 loss

def SmoothL1(yhat, y):                                                  <--- final choice
    return torch.nn.functional.smooth_l1_loss(yhat, y)

def MSELoss(yhat, y):
    return torch.nn.functional.mse_loss(yhat, y)

def RMSELoss(yhat, y):
    return torch.sqrt(MSELoss(yhat, y))

def MSLELoss(yhat, y):
    return MSELoss(torch.log(yhat + 1), torch.log(y + 1))

def RMSLELoss(yhat, y):
    return torch.sqrt(MSELoss(torch.log(yhat + 1), torch.log(y + 1)))

evaluation metric

def mse(output, target):
    # mean square error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        mae = torch.sum(MSELoss(output, target)).item()
    return mae / len(target)

def mae(output, target):
    # mean absolute error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        mae = torch.sum(abs(target-output)).item()
    return mae / len(target)

def mape(output, target):
    # mean absolute percentage error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        mape = torch.sum(abs((target-output)/target)).item()
    return mape / len(target)

def rmse(output, target):
    # root mean square error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        rmse = torch.sum(torch.sqrt(MSELoss(output, target))).item()
    return rmse / len(target)

def msle(output, target):
    # mean square log error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        msle = torch.sum(MSELoss(torch.log(output + 1), torch.log(target + 1))).item()
    return msle / len(target)

def rmsle(output, target):
    # root mean square log error
    with torch.no_grad():
        assert output.shape[0] == len(target)
        rmsle = torch.sum(torch.sqrt(MSELoss(torch.log(output + 1), torch.log(target + 1)))).item()
    return rmsle / len(target)

training result

trainer - INFO -     epoch          : 1
trainer - INFO -     smooth_l1loss  : 0.0029358651146370296
trainer - INFO -     mse            : 9.174910654958997e-05
trainer - INFO -     mae            : 0.04508562459920844
trainer - INFO -     mape           : 0.6447089369893074
trainer - INFO -     rmse           : 0.0008826211761528006
trainer - INFO -     msle           : 0.0002885178522810747
trainer - INFO -     rmsle          : 0.0016459243478796756
trainer - INFO -     val_loss       : 0.000569225614812846
trainer - INFO -     val_mse        : 1.7788300462901436e-05
trainer - INFO -     val_mae        : 0.026543946107228596
trainer - INFO -     val_mape       : 0.48582320946455004
trainer - INFO -     val_rmse       : 0.0005245986936303476
trainer - INFO -     val_msle       : 9.091730712680146e-05
trainer - INFO -     val_rmsle      : 0.0009993902465794235
                    .
                    .
                    .
                    .
                    .
                    .
trainer - INFO -     epoch          : 7                           <--- final model
trainer - INFO -     smooth_l1loss  : 0.00017805844737449661
trainer - INFO -     mse            : 5.564326480453019e-06
trainer - INFO -     mae            : 0.01469234253714482
trainer - INFO -     mape           : 0.2645472921580076
trainer - INFO -     rmse           : 0.0002925463738307978
trainer - INFO -     msle           : 3.3151906652316634e-05
trainer - INFO -     rmsle          : 0.0005688522928685416
trainer - INFO -     val_loss       : 0.00017794455110561102
trainer - INFO -     val_mse        : 5.560767222050344e-06
trainer - INFO -     val_mae        : 0.014510956528286139
trainer - INFO -     val_mape       : 0.25059283276398975
trainer - INFO -     val_rmse       : 0.0002930224982944007
trainer - INFO -     val_msle       : 3.403802761204133e-05
trainer - INFO -     val_rmsle      : 0.0005525556141122554
trainer - INFO - Saving checkpoint: saved/models/correlation/1031_043742/checkpoint-epoch7.pth ...
trainer - INFO - Saving current best: model_best.pth ...
                    .
                    .
                    .
                    .
                    .
                    .
trainer - INFO -     epoch          : 10                           <--- early stop
trainer - INFO -     smooth_l1loss  : 0.00014610137016279624
trainer - INFO -     mse            : 4.565667817587382e-06
trainer - INFO -     mae            : 0.013266990386570494
trainer - INFO -     mape           : 0.24146838792661826
trainer - INFO -     rmse           : 0.00026499629460158757
trainer - INFO -     msle           : 2.77259079665176e-05
trainer - INFO -     rmsle          : 0.0005148174095957074
trainer - INFO -     val_loss       : 0.00018394086218904705
trainer - INFO -     val_mse        : 5.74815194340772e-06
trainer - INFO -     val_mae        : 0.01494487459709247
trainer - INFO -     val_mape       : 0.27262411576509477
trainer - INFO -     val_rmse       : 0.0002979971170425415
trainer - INFO -     val_msle       : 3.1850282267744966e-05
trainer - INFO -     val_rmsle      : 0.0005451643197642019
trainer - INFO - Validation performance didn't improve for 2 epochs. Training stops.

loss graph dist

testing result

Loading checkpoint: saved/models/correlation/model_best.pth ...
Done
Testing set samples: 30000
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 59/59 [00:19<00:00,  3.04it/s]
Testing result:
{'loss': 0.0001722179292468354, 'mse': 6.77461177110672e-07, 'mae': 0.014289384969075522, 'mape': 0.2813985677083333, 'rmse': 3.6473782857259115e-05, 'msle': 3.554690380891164e-06, 'rmsle': 7.881066799163819e-05}
Owner
HR Wu
HR Wu
This is the core of the program which takes 5k SYMBOLS and looks back N years to pull in the daily OHLC data of those symbols and saves them to disc.

This is the core of the program which takes 5k SYMBOLS and looks back N years to pull in the daily OHLC data of those symbols and saves them to disc.

Daniel Caine 1 Jan 31, 2022
Project in which we modelise an Among Us problem using graph theories.

Python-AmongUsProblem Project in which we modelise an Among Us problem using graph theories. The rules are as following: Total of 100 players 10 playe

Gabriel Shenouda 1 Feb 09, 2022
1000+ ready code templates to kickstart your next AI experiment

AI Seed Projects Start with ready code for your next AI experiment. Choose from 1000+ code templates, across a wide variety of use cases. All examples

BlobCity, Inc 98 Jan 03, 2023
Using Python to parse through email logs received through several backup systems.

outlook-automated-backup-control Backup monitoring on a mailbox: In this mailbox there will be backup logs. The identification will based on the follo

Connor 2 Sep 28, 2022
Automatización del proceso Inmofianza

Selenium Inmofianza Proyecto de pruebas automatizadas con selenium webdriver para el aplicativo Omnicanalidad Pre-requisitos 📋 Componentes que deben

Natalia Narváez 1 Jan 07, 2022
Covid-ml-predictors - COVID predictions using AI.

COVID Predictions This repo contains ML models to be trained on COVID-19 data from the UK, sourced off of Kaggle here. This uses many different ML mod

1 Jan 09, 2022
emoji-math computes the given python expression and returns either the value or the nearest 5 emojis as measured by cosine similarity.

emoji-math computes the given python expression and returns either the value or the nearest 5 emojis as measured by cosine similarity.

Andrew White 13 Dec 11, 2022
simple password manager.

simple password manager.

1 Nov 18, 2021
Convert ldapdomaindump to Bloodhound

ldd2bh Usage usage: ldd2bh.py [-h] [-i INPUT_FOLDER] [-o OUTPUT_FOLDER] [-a] [-u] [-c] [-g] [-d] Convert ldapdomaindump to Bloodhoun

64 Oct 30, 2022
Projeto job insights - Projeto avaliativo da Trybe do Bloco 32: Introdução à Python

Termos e acordos Ao iniciar este projeto, você concorda com as diretrizes do Código de Ética e Conduta e do Manual da Pessoa Estudante da Trybe. Boas

Lucas Muffato 1 Dec 09, 2021
A competition for forecasting electricity demand at the country-level using a standard backtesting framework

A competition for forecasting electricity demand at the country-level using a standard backtesting framework

5 Jul 12, 2022
Tool that adds githuh profile views to ur acc

Tool that adds githuh profile views to ur acc

Lamp 2 Nov 28, 2021
RestMapper takes the pain out of integrating with RESTful APIs.

python-restmapper RestMapper takes the pain out of integrating with RESTful APIs. It removes all of the complexity with writing API-specific code, and

Lionheart Software 8 Oct 31, 2020
Context-free grammar to Sublime-syntax file

Generate a sublime-syntax file from a non-left-recursive, follow-determined, context-free grammar

Haggai Nuchi 8 Nov 17, 2022
Digdata presented 'BrandX' as a clothing brand that wants to know the best places to set up a 'pop up' store.

Digdata presented 'BrandX' as a clothing brand that wants to know the best places to set up a 'pop up' store. I used the dataset given to write a program that ranks these places.

Mahmoud 1 Dec 11, 2021
Cairo-bloom - A naive bloom filter implementation in Cairo

🥀 cairo-bloom A naive bloom filter implementation in Cairo. A Bloom filter is a

Sam Barnes 37 Oct 01, 2022
A (hopefully) considerably copious collection of classical cipher crackers

ClassicalCipherCracker A (hopefully) considerably copious collection of classical cipher crackers Written in Python3 (and run with PyPy) TODOs Write a

Stanley Zhong 2 Feb 22, 2022
Wrappers around the most common maya.cmds and maya.api use cases

Maya FunctionSet (maya_fn) A package that decompose core maya.cmds and maya.api features to a set of simple functions. Tests The recommended approach

Ryan Porter 9 Mar 12, 2022
A data engineering project with Kafka, Spark Streaming, dbt, Docker, Airflow, Terraform, GCP and much more!

Streamify A data pipeline with Kafka, Spark Streaming, dbt, Docker, Airflow, Terraform, GCP and much more! Description Objective The project will stre

Ankur Chavda 206 Dec 30, 2022
Traits for Python3

Do you like Python, but think that multiple inheritance is a bit too flexible? Are you looking for a more constrained way to define interfaces and re-use code?

121 Nov 15, 2022