Reproducible nvim completion framework benchmarks.

Overview

Nvim.Bench

Reproducible nvim completion framework benchmarks.

Runs inside Docker. Fair and balanced


Methodology

Note: for all "randomness", they are generated from the same seed for each run, and therefore "fair".

Input

tmux is used to send keys to simulate ideal human typing.

The words typed are naive tokens from parsing current document into (alphanum + "_") delimited by whitespaces and symbols.

This tokenization should work fairly well for c family of languages, which are the industry standard.

A uniform distribution of whitespaces is also generated from the same buffer.

Measurement

n keystrokes of --samples is performed.

Speed

Using --avg-word-len, --wpm and --variance, a Normal Distribution is constructed of the desired delay between keystrokes.

Data

See ./fs/data/

Modularity

Some frameworks will have by default, very little sources enabled, if any.

Other ones will come with more out of the box.

For a fair comparison: All frameworks tested will have to following enabled, on top of whatever else they come enabled by default:

  • buffer

  • lsp

  • path

The reasoning is that: 1) Almost all authors will have written these sources firsthand, and 2) they seem to be the most useful sources.

No default sources will be disabled, because users don't tend to do that.


Cool, pictures

The plots are kernel density estimations, have no idea why they fitted more than 1 curve for some plots.

I usually use R, not used to python ploting. Anyways, they are an estimate of the true probability density function.

Q0, 50, 95, 100?

Mean min, median, 1 in 20, max, respectively.

Without assuming any statistical distribution:

Q50 is a more robust measure than avg, and Q95 is a decent measure of a common bad value.


Analysis

Please keep in mind that this is purely a synthetic benchmark, which definitely is one of those need context to interpret type of things.

There is no good way to measure real speed across frameworks, raw numbers here come with big caveats.

Study design limitations

Streaming completion

Streaming completion is very good for time to first result (TTFR), but it presents us with an issue:

While the fast sources will return right away, the slower ones might never make it before the next keystroke.

This has the funny effect of removing the influence of slower sources entirely, which is disastrous for study integrity.

The mitigation is actually to set typing speed unrealistically slow, enough so that we have confidence that the LSP servers can catch up.

This is obviously not ideal.

Fast on paper != fast IRL

The most responsive frameworks are not necessarily the fastest ones, because humans still have to choose the results.

For example the streaming completion approach actually has severe trade offs infavor of faster TTFR:

Ranking

Having suboptimal ranking is BAD, it pushes work from fast machines onto slow humans.

The streaming approach has to be additive, because its too disruptive to shift existing menu items around.

Therefore it is limited to sorting only within stream batches, and to make things worse, slower batches typically contain higher quality results.

That means better results will often end up at the bottom, necessitating more work for humans.

Limiting

This is a direct consequence of limited ranking optimizations.

Because the framework have no idea how much each source will send, it has the dilemma of either sending too many results or too little.

Sending too many results in early batches from likely inferior sources will waste the users time, and sending too little will obscure potentially useful completions.

Clarity on when / if results will come in

This is a HCI thing:

Having higher quality results come in slower is likely to inadvertently train users to wait for them. This is evidently bad for input speed.

Conclusion

There is never going to be a closed form solution to "what is the fastest framework", because of the trade offs detailed above.

A toy example of a degenerate framework that returns a single fixed 👌 emoji will probably beat anything out there in terms of raw speed, but it is utterly useless.

Before you reach your own conclusion, the results of this repo must be considered alongside inextricably human measure.

Owner
i love my dog
dogs are love dogs are life
i love my dog
Painel simples com consulta de cep,CNPJ,placa e ip

Painel mpm Um painel simples com consultas de IP, CNPJ, CEP e PLACA Início 🌐 apt update && apt upgrade -y pkg i python git pip install requests Insta

8 Feb 27, 2022
A set of decks and notebooks with exercises for use in a hands-on causal inference tutorial session

intro-to-causal-inference A introduction to causal inference using common tools from the python data stack Table of Contents Getting Started Install g

Roni Kobrosly 15 Dec 07, 2022
Snek-test - An operating system kernel made in python and assembly

pythonOS An operating system kernel made in python and assembly Wait what? It us

TechStudent10 2 Jan 25, 2022
LPCV Winner Solution of Spring Team

LPCV Winner Solution of Spring Team

22 Jul 20, 2022
Dapp / Forge traces enhancer

traces-explorer Dapp / Forge traces enhancer Usage traces.py and pattern_* files should be in the same directory make test traces.txt py traces.

1 Feb 02, 2022
oracle arm registration script.

oracle_arm oracle arm registration script. 乌龟壳刷ARM脚本 本脚本优点 简单,主机配置好oci,然后下载main.tf即可,不用自己获取各种参数。 运行环境配置 本简单脚本使用python3编写,请自行配置好python3环境和requests库。(高版

test1234455 419 Jan 01, 2023
Utility functions for working with data from Nix in Python

Pynixutil - Utility functions for working with data from Nix in Python Examples Base32 encoding/decoding import pynixutil input = "v5sv61sszx301i0x6x

Tweag 11 Dec 16, 2022
Convert text with ANSI color codes to HTML or to LaTeX.

Convert text with ANSI color codes to HTML or to LaTeX.

PyContribs 326 Dec 28, 2022
It is convenient to quickly import Python packages from the network.

It is convenient to quickly import Python packages from the network.

zmaplex 1 Jan 18, 2022
An implementation of multimap with per-item expiration backed up by Redis.

MultiMapWithTTL An implementation of multimap with per-item expiration backed up by Redis. Documentation: https://loggi.github.io/python-multimapwitht

Loggi 2 Jan 17, 2022
Python client SDK designed to simplify integrations by automating key generation and certificate enrollment using Venafi machine identity services.

This open source project is community-supported. To report a problem or share an idea, use Issues; and if you have a suggestion for fixing the issue,

Venafi, Inc. 13 Sep 27, 2022
Generate Openbox Menus from a easy to write configuration file.

openbox-menu-generator Generate Openbox Menus from a easy to write configuration file. Example Configuration: ('#' indicate comments but not implement

3 Jul 14, 2022
This is a small compiler to demonstrate how compilers work.

This is a small compiler to demonstrate how compilers work. It compiles our own dialect to C, while being written in Python.

Md. Tonoy Akando 2 Jul 19, 2022
Placeholders is a single-unit storage solution for your Frontend.

Placeholder Placeholders is a single-unit file storage solution for your Frontend. Why Placeholder? Generally, when a website/service requests for fil

Tanmoy Sen Gupta 1 Nov 09, 2021
SimilarWeb for Team ACT v.0.0.1

SimilarWeb for Team ACT v.0.0.1 This module has been built to provide a better environment specifically for Similarweb in Team ACT. This module itself

Sunkyeong Lee 0 Dec 29, 2021
Learn Python Regular Expressions step by step from beginner to advanced levels

Python re(gex)? Learn Python Regular Expressions step by step from beginner to advanced levels with hundreds of examples and exercises The book also i

Sundeep Agarwal 1.3k Dec 28, 2022
We want to check several batch of web URLs (1~100 K) and find the phishing website/URL among them.

We want to check several batch of web URLs (1~100 K) and find the phishing website/URL among them. This module is designed to do the URL/web attestation by using the API from NUS-Phishperida-Project.

3 Dec 28, 2022
A gamey, snakey esoteric programming language

Snak Snak is an esolang based on the classic snake game. Installation You will need python3. To use the visualizer, you will need the curses module. T

David Rutter 3 Oct 10, 2022
A parallel branch-and-bound engine for Python.

pybnb A parallel branch-and-bound engine for Python. This software is copyright (c) by Gabriel A. Hackebeil (gabe.hacke

Gabriel Hackebeil 52 Nov 12, 2022
Lightweight and Modern kernel for VK Bots

This is the kernel for creating VK Bots written in Python 3.9

Yrvijo 4 Nov 21, 2021