Reproducible nvim completion framework benchmarks.

Overview

Nvim.Bench

Reproducible nvim completion framework benchmarks.

Runs inside Docker. Fair and balanced


Methodology

Note: for all "randomness", they are generated from the same seed for each run, and therefore "fair".

Input

tmux is used to send keys to simulate ideal human typing.

The words typed are naive tokens from parsing current document into (alphanum + "_") delimited by whitespaces and symbols.

This tokenization should work fairly well for c family of languages, which are the industry standard.

A uniform distribution of whitespaces is also generated from the same buffer.

Measurement

n keystrokes of --samples is performed.

Speed

Using --avg-word-len, --wpm and --variance, a Normal Distribution is constructed of the desired delay between keystrokes.

Data

See ./fs/data/

Modularity

Some frameworks will have by default, very little sources enabled, if any.

Other ones will come with more out of the box.

For a fair comparison: All frameworks tested will have to following enabled, on top of whatever else they come enabled by default:

  • buffer

  • lsp

  • path

The reasoning is that: 1) Almost all authors will have written these sources firsthand, and 2) they seem to be the most useful sources.

No default sources will be disabled, because users don't tend to do that.


Cool, pictures

The plots are kernel density estimations, have no idea why they fitted more than 1 curve for some plots.

I usually use R, not used to python ploting. Anyways, they are an estimate of the true probability density function.

Q0, 50, 95, 100?

Mean min, median, 1 in 20, max, respectively.

Without assuming any statistical distribution:

Q50 is a more robust measure than avg, and Q95 is a decent measure of a common bad value.


Analysis

Please keep in mind that this is purely a synthetic benchmark, which definitely is one of those need context to interpret type of things.

There is no good way to measure real speed across frameworks, raw numbers here come with big caveats.

Study design limitations

Streaming completion

Streaming completion is very good for time to first result (TTFR), but it presents us with an issue:

While the fast sources will return right away, the slower ones might never make it before the next keystroke.

This has the funny effect of removing the influence of slower sources entirely, which is disastrous for study integrity.

The mitigation is actually to set typing speed unrealistically slow, enough so that we have confidence that the LSP servers can catch up.

This is obviously not ideal.

Fast on paper != fast IRL

The most responsive frameworks are not necessarily the fastest ones, because humans still have to choose the results.

For example the streaming completion approach actually has severe trade offs infavor of faster TTFR:

Ranking

Having suboptimal ranking is BAD, it pushes work from fast machines onto slow humans.

The streaming approach has to be additive, because its too disruptive to shift existing menu items around.

Therefore it is limited to sorting only within stream batches, and to make things worse, slower batches typically contain higher quality results.

That means better results will often end up at the bottom, necessitating more work for humans.

Limiting

This is a direct consequence of limited ranking optimizations.

Because the framework have no idea how much each source will send, it has the dilemma of either sending too many results or too little.

Sending too many results in early batches from likely inferior sources will waste the users time, and sending too little will obscure potentially useful completions.

Clarity on when / if results will come in

This is a HCI thing:

Having higher quality results come in slower is likely to inadvertently train users to wait for them. This is evidently bad for input speed.

Conclusion

There is never going to be a closed form solution to "what is the fastest framework", because of the trade offs detailed above.

A toy example of a degenerate framework that returns a single fixed šŸ‘Œ emoji will probably beat anything out there in terms of raw speed, but it is utterly useless.

Before you reach your own conclusion, the results of this repo must be considered alongside inextricably human measure.

Owner
i love my dog
dogs are love dogs are life
i love my dog
Code for ML, domain generation, graph generation of ABC dataset

This is the repository for codes for ML, domain generation, graph generation of Asymmetric Buckling Columns (ABC) dataset in the paper "Learning Mechanically Driven Emergent Behavior with Message Pas

Peerasait Prachaseree (Jeffrey) 0 Jan 28, 2022
Transform Python source code into it's most compact representation

Python Minifier Transforms Python source code into it's most compact representation. Try it out! python-minifier currently supports Python 2.7 and Pyt

Daniel Flook 403 Jan 02, 2023
Bionic is Python Framework for crafting beautiful, fast user experiences for web and is free and open source.

Bionic is Python Framework for crafting beautiful, fast user experiences for web and is free and open source. Getting Started This is an example of ho

14 Apr 10, 2022
A basic animation modding workflow for FFXIV

AnimAssist Provides a quick and easy way to mod animations in FFXIV. You will need: Before anything, the VC++2012 32-bit Redist from here. Havok will

liam 37 Dec 16, 2022
NeurIPS'19: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting (Pytorch implementation for noisy labels).

Meta-Weight-Net NeurIPS'19: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting (Official Pytorch implementation for noisy labels). The

243 Jan 03, 2023
Snek-test - An operating system kernel made in python and assembly

pythonOS An operating system kernel made in python and assembly Wait what? It us

TechStudent10 2 Jan 25, 2022
A play store search module

A play store search module

Fayas Noushad 5 Dec 01, 2021
BloodCheck enables Red and Blue Teams to manage multiple Neo4j databases and run Cypher queries against a BloodHound dataset.

BloodCheck BloodCheck enables Red and Blue Teams to manage multiple Neo4j databases and run Cypher queries against a BloodHound dataset. Installation

Mr B0b 16 Nov 05, 2021
Automatically skip sponsor segments in YouTube videos playing on Apple TV.

iSponsorBlockTV Skip sponsor segments in YouTube videos playing on an Apple TV. This project is written in asycronous python and should be pretty quic

David 64 Dec 17, 2022
Pattern Matching for Python 3.7+ in a simple, yet powerful, extensible manner.

Awesome Pattern Matching (apm) for Python pip install awesome-pattern-matching Simple Powerful Extensible Composable Functional Python 3.7+, PyPy3.7+

Julian Fleischer 97 Nov 03, 2022
Compiler Final Project - Lisp Interpreter

Compiler Final Project - Lisp Interpreter

2 Jan 23, 2022
JARVIS PC Assistant is an assisting program to make your computer easier to use

JARVIS-PC-Assistant JARVIS PC Assistant is an assisting program to make your computer easier to use Welcome to the J.A.R.V.I.S. PC Assistant help file

Dasun Nethsara 2 Dec 02, 2022
An extremely configurable markdown reverser for Python3.

šŸ”„ Unmarkd A markdown reverser. Unmarkd is a BeautifulSoup-powered Markdown reverser written in Python and for Python. Why This is created as a StackS

ThatXliner 5 Jun 27, 2022
A script to add issues to a project in Github based on label or status.

Add Github Issues to Project (Beta) A python script to move Github issues to a next-gen (beta) Github Project Getting Started These instructions will

Kate Donaldson 3 Jan 16, 2022
Consulta cpf fds

Consulta-cpf Consulta cpf fds InstalaĆ§Ć£o: apt-get update -y

Moleey 1 Nov 24, 2021
App to decide weekly winners in H2H 1 Win (9 Cat)

Fantasy Weekly Winner for H2H 1 Win (9 Cat) Yahoo Fantasy API Read

Sai Atmakuri 1 Dec 31, 2021
Programa principal de la Silla C.D.P.

Silla CDP PĆ”gina Web ContĆ”ctenos Lista de contenidos: InformaciĆ³n del proyecto. Licencias. Contacto. InformaciĆ³n del proyecto Silla CDP, o Silla Corre

Silla Control de Postura 1 Dec 02, 2021
Render reMarkable documents to PDF

rmrl: reMarkable Rendering Library rmrl is a Python library for rendering reMarkable documents to PDF files. It takes the original PDF document and th

Robert Schroll 95 Dec 25, 2022
Functional interface for concurrent futures, including asynchronous I/O.

Futured provides a consistent interface for concurrent functional programming in Python. It wraps any callable to return a concurrent.futures.Future,

A. Coady 11 Nov 27, 2022
Experiments with Tox plugin system

The project is an attempt to add to the tox some missing out of the box functionality. Basically it is just an extension for the tool that will be loa

Volodymyr Vitvitskyi 30 Nov 26, 2022