A neural-based binary analysis tool

Related tags

Data Analysisnbref
Overview

A neural-based binary analysis tool

Introduction

This directory contains the demo of a neural-based binary analysis tool. We test the framework using multiple binary analysis tasks: (i) vulnerability detection. (ii) code similarity measures. (iii) decompilations. (iv) malware analysis (coming later).

Requirements

  • Python 3.7.6
  • Python packages
    • dgl 0.6.0
    • numpy 1.18.1
    • pandas 1.2.0
    • scipy 1.4.1
    • sklearn 0.0
    • tensorboard 2.2.1
    • torch 1.5.0
    • torchtext 0.2.0
    • tqdm 4.42.1
    • wget 3.2
  • C++14 compatible compiler
  • Clang++ 3.7.1

Tasks and Dataset preparation

Binary code similarity measures

  1. Download dataset
    • Download POJ-104 datasets from here and extract them into data/.
  2. Compile and preprocess
    • Run python extract_obj.py -a data/obj (clang++-3.7.1 required)
    • Run python preprocess/split_dataset.py -i data/obj -m p -o data/split.pkl to split the dataset into train/valid/test sets.
    • Run python preprocess/sim_preprocess.py to compile the binary code into graphs data.
    • *(part of the preprocessing code are from [1])

Binary Vulnerability detections

  1. Cramming the binary dataset
    • The dataset is built on top of Devign. We compile the entire library based on the commit id and dump the binary code of the vulnerable functions. The cramming code is given in preprocess/cram_vul_dataset.
  2. Download Preprocessed data
    • Run ./preprocess.sh (clang++-3.7.1 required), or
    • You can directly download the preprocessed datasets from here and extract them into data/.
    • Run python preprocess/vul_preprocess.py to compile the binary code into graphs data

Binary decompilation [N-Bref]

  1. Download dataset
    • Download the demo datasets (raw and preprocessed data) from here and extract them into data/. (More datasets to come.)
    • No need to compile the code into graph again as the data has already been preprocessed.

Training and Evaluation

Binary code similarity measures

  • Run cd baseline_model && python run_similarity_check.py

Binary Vulnerability detections

  • Run cd baseline_model && python run_vulnerability_detection.py

Binary decompilation [N-Bref]

  1. Dump the trace of tree expansion:
    • To accelerate the online processing of the tree output, we will dump the trace of the trea data by running python -m preprocess.dump_trace
  2. Training scripts:
    • First, cd baseline model.
    • To train the model using torch parallel, run python run_tree_transformer.py.
    • To train it on multi-gpu using distribute pytorch, run python run_tree_transformer_multi_gpu.py
    • To evaluate, run python run_tree_transformer.py --eval
    • To evaluate a multi-gpu trained model, run python run_tree_transformer_multi_gpu.py --eval

References

[1] Ye, Fangke, et al. "MISIM: An End-to-End Neural Code Similarity System." arXiv preprint arXiv:2006.05265 (2020).

[2] Zhou, Yaqin, et al. "Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks." Advances in Neural Information Processing Systems. 2019.

[3] Shi, Zhan, et al. "Learning Execution through Neural Code Fusion.", ICLR (2019).

License

This repo is CC-BY-NC licensed, as found in the LICENSE file.

Owner
Facebook Research
Facebook Research
Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data

WeRateDogs Twitter Data from 2015 to 2017 Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data Table of Contents Introduction Proj

Keenan Cooper 1 Jan 12, 2022
Making the DAEN information accessible.

The purpose of this repository is to make the information on Australian COVID-19 adverse events accessible. The Therapeutics Goods Administration (TGA) keeps a database of adverse reactions to medica

10 May 10, 2022
vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models

gg I wasn't satisfied with any of the other available Gemini clients, so I wrote my own. Requires Python 3.9 (maybe older, I haven't checked) and opti

RAFAEL RODRIGUES 5 Jan 03, 2023
4CAT: Capture and Analysis Toolkit

4CAT: Capture and Analysis Toolkit 4CAT is a research tool that can be used to analyse and process data from online social platforms. Its goal is to m

Digital Methods Initiative 147 Dec 20, 2022
Fit models to your data in Python with Sherpa.

Table of Contents Sherpa License How To Install Sherpa Using Anaconda Using pip Building from source History Release History Sherpa Sherpa is a modeli

134 Jan 07, 2023
This creates a ohlc timeseries from downloaded CSV files from NSE India website and makes a SQLite database for your research.

NSE-timeseries-form-CSV-file-creator-and-SQL-appender- This creates a ohlc timeseries from downloaded CSV files from National Stock Exchange India (NS

PILLAI, Amal 1 Oct 02, 2022
PyPSA: Python for Power System Analysis

1 Python for Power System Analysis Contents 1 Python for Power System Analysis 1.1 About 1.2 Documentation 1.3 Functionality 1.4 Example scripts as Ju

758 Dec 30, 2022
Vaex library for Big Data Analytics of an Airline dataset

Vaex-Big-Data-Analytics-for-Airline-data A Python notebook (ipynb) created in Jupyter Notebook, which utilizes the Vaex library for Big Data Analytics

Nikolas Petrou 1 Feb 13, 2022
Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format

Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format.

Brady Law 2 Dec 01, 2021
Probabilistic reasoning and statistical analysis in TensorFlow

TensorFlow Probability TensorFlow Probability is a library for probabilistic reasoning and statistical analysis in TensorFlow. As part of the TensorFl

3.8k Jan 05, 2023
A Python 3 library making time series data mining tasks, utilizing matrix profile algorithms

MatrixProfile MatrixProfile is a Python 3 library, brought to you by the Matrix Profile Foundation, for mining time series data. The Matrix Profile is

Matrix Profile Foundation 302 Dec 29, 2022
Data imputations library to preprocess datasets with missing data

Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.

Elton Law 329 Dec 05, 2022
Supply a wrapper ``StockDataFrame`` based on the ``pandas.DataFrame`` with inline stock statistics/indicators support.

Stock Statistics/Indicators Calculation Helper VERSION: 0.3.2 Introduction Supply a wrapper StockDataFrame based on the pandas.DataFrame with inline s

Cedric Zhuang 1.1k Dec 28, 2022
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
Scraping and analysis of leetcode-compensations page.

Leetcode compensations report Scraping and analysis of leetcode-compensations page.

utsav 96 Jan 01, 2023
The Dash Enterprise App Gallery "Oil & Gas Wells" example

This app is based on the Dash Enterprise App Gallery "Oil & Gas Wells" example. For more information and more apps see: Dash App Gallery See the Dash

Austin Caudill 1 Nov 08, 2021
A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful.

How useful is the aswer? A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful. If you want to l

1 Dec 17, 2021
Very useful and necessary functions that simplify working with data

Additional-function-for-pandas Very useful and necessary functions that simplify working with data random_fill_nan(module_name, nan) - Replaces all sp

Alexander Goldian 2 Dec 02, 2021
PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

Burn Research 4 Oct 13, 2022
Data analysis and visualisation projects from a range of individual projects and applications

Python-Data-Analysis-and-Visualisation-Projects Data analysis and visualisation projects from a range of individual projects and applications. Python

Tom Ritman-Meer 1 Jan 25, 2022