Visual Attention based OCR

Overview

Attention-OCR

Authours: Qi Guo and Yuntian Deng

Visual Attention based OCR. The model first runs a sliding CNN on the image (images are resized to height 32 while preserving aspect ratio). Then an LSTM is stacked on top of the CNN. Finally, an attention model is used as a decoder for producing the final outputs.

example image 0

Prerequsites

Most of our code is written based on Tensorflow, but we also use Keras for the convolution part of our model. Besides, we use python package distance to calculate edit distance for evaluation. (However, that is not mandatory, if distance is not installed, we will do exact match).

Tensorflow: Installation Instructions (tested on 0.12.1)

Distance (Optional):

wget http://www.cs.cmu.edu/~yuntiand/Distance-0.1.3.tar.gz
tar zxf Distance-0.1.3.tar.gz
cd distance; sudo python setup.py install

Usage:

Note: We assume that the working directory is Attention-OCR.

Train

Data Preparation

We need a file (specified by parameter data-path) containing the path of images and the corresponding characters, e.g.:

path/to/image1 abc
path/to/image2 def

And we also need to specify a data-base-dir parameter such that we read the images from path data-base-dir/path/to/image. If data-path contains absolute path of images, then data-base-dir needs to be set to /.

A Toy Example

For a toy example, we have prepared a training dataset of the specified format, which is a subset of Synth 90k

wget http://www.cs.cmu.edu/~yuntiand/sample.tgz
tar zxf sample.tgz
python src/launcher.py --phase=train --data-path=sample/sample.txt --data-base-dir=sample --log-path=log.txt --no-load-model

After a while, you will see something like the following output in log.txt:

...
2016-06-08 20:47:22,335 root  INFO     Created model with fresh parameters.
2016-06-08 20:47:52,852 root  INFO     current_step: 0
2016-06-08 20:48:01,253 root  INFO     step_time: 8.400597, step perplexity: 38.998714
2016-06-08 20:48:01,385 root  INFO     current_step: 1
2016-06-08 20:48:07,166 root  INFO     step_time: 5.781749, step perplexity: 38.998445
2016-06-08 20:48:07,337 root  INFO     current_step: 2
2016-06-08 20:48:12,322 root  INFO     step_time: 4.984972, step perplexity: 39.006730
2016-06-08 20:48:12,347 root  INFO     current_step: 3
2016-06-08 20:48:16,821 root  INFO     step_time: 4.473902, step perplexity: 39.000267
2016-06-08 20:48:16,859 root  INFO     current_step: 4
2016-06-08 20:48:21,452 root  INFO     step_time: 4.593249, step perplexity: 39.009864
2016-06-08 20:48:21,530 root  INFO     current_step: 5
2016-06-08 20:48:25,878 root  INFO     step_time: 4.348195, step perplexity: 38.987707
2016-06-08 20:48:26,016 root  INFO     current_step: 6
2016-06-08 20:48:30,851 root  INFO     step_time: 4.835423, step perplexity: 39.022887

Note that it takes quite a long time to reach convergence, since we are training the CNN and attention model simultaneously.

Test and visualize attention results

The test data format shall be the same as training data format. We have also prepared a test dataset of the specified format, which includes ICDAR03, ICDAR13, IIIT5k and SVT.

wget http://www.cs.cmu.edu/~yuntiand/evaluation_data.tgz
tar zxf evaluation_data.tgz

We also provide a trained model on Synth 90K:

wget http://www.cs.cmu.edu/~yuntiand/model.tgz
tar zxf model.tgz
python src/launcher.py --phase=test --visualize --data-path=evaluation_data/svt/test.txt --data-base-dir=evaluation_data/svt --log-path=log.txt --load-model --model-dir=model --output-dir=results

After a while, you will see something like the following output in log.txt:

2016-06-08 22:36:31,638 root  INFO     Reading model parameters from model/translate.ckpt-47200
2016-06-08 22:36:40,529 root  INFO     Compare word based on edit distance.
2016-06-08 22:36:41,652 root  INFO     step_time: 1.119277, step perplexity: 1.056626
2016-06-08 22:36:41,660 root  INFO     1.000000 out of 1 correct
2016-06-08 22:36:42,358 root  INFO     step_time: 0.696687, step perplexity: 2.003350
2016-06-08 22:36:42,363 root  INFO     1.666667 out of 2 correct
2016-06-08 22:36:42,831 root  INFO     step_time: 0.466550, step perplexity: 1.501963
2016-06-08 22:36:42,835 root  INFO     2.466667 out of 3 correct
2016-06-08 22:36:43,402 root  INFO     step_time: 0.562091, step perplexity: 1.269991
2016-06-08 22:36:43,418 root  INFO     3.366667 out of 4 correct
2016-06-08 22:36:43,897 root  INFO     step_time: 0.477545, step perplexity: 1.072437
2016-06-08 22:36:43,905 root  INFO     4.366667 out of 5 correct
2016-06-08 22:36:44,107 root  INFO     step_time: 0.195361, step perplexity: 2.071796
2016-06-08 22:36:44,127 root  INFO     5.144444 out of 6 correct

Example output images in results/correct (the output directory is set via parameter output-dir and the default is results): (Look closer to see it clearly.)

Format: Image index (predicted/ground truth) Image file

Image 0 (j/j): example image 0

Image 1 (u/u): example image 1

Image 2 (n/n): example image 2

Image 3 (g/g): example image 3

Image 4 (l/l): example image 4

Image 5 (e/e): example image 5

Parameters:

  • Control

    • phase: Determine whether to train or test.
    • visualize: Valid if phase is set to test. Output the attention maps on the original image.
    • load-model: Load model from model-dir or not.
  • Input and output

    • data-base-dir: The base directory of the image path in data-path. If the image path in data-path is absolute path, set it to /.
    • data-path: The path containing data file names and labels. Format per line: image_path characters.
    • model-dir: The directory for saving and loading model parameters (structure is not stored).
    • log-path: The path to put log.
    • output-dir: The path to put visualization results if visualize is set to True.
    • steps-per-checkpoint: Checkpointing (print perplexity, save model) per how many steps
  • Optimization

    • num-epoch: The number of whole data passes.
    • batch-size: Batch size. Only valid if phase is set to train.
    • initial-learning-rate: Initial learning rate, note the we use AdaDelta, so the initial value doe not matter much.
  • Network

    • target-embedding-size: Embedding dimension for each target.
    • attn-use-lstm: Whether or not use LSTM attention decoder cell.
    • attn-num-hidden: Number of hidden units in attention decoder cell.
    • attn-num-layers: Number of layers in attention decoder cell. (Encoder number of hidden units will be attn-num-hidden*attn-num-layers).
    • target-vocab-size: Target vocabulary size. Default is = 26+10+3 # 0: PADDING, 1: GO, 2: EOS, >2: 0-9, a-z

References

Convert a formula to its LaTex source

What You Get Is What You See: A Visual Markup Decompiler

Torch attention OCR

Owner
Yuntian Deng
Yuntian Deng
LEARN OPENCV IN 3 HOURS USING PYTHON - INCLUDING EXAMPLE PROJECTS

LEARN OPENCV IN 3 HOURS USING PYTHON - INCLUDING EXAMPLE PROJECTS

Murtaza Hassan 815 Dec 29, 2022
Binarize document images

Binarization Binarization for document images Examples Introduction This tool performs document image binarization (i.e. transform colour/grayscale to

QURATOR-SPK 48 Jan 02, 2023
Thresholding-and-masking-using-OpenCV - Image Thresholding is used for image segmentation

Image Thresholding is used for image segmentation. From a grayscale image, thresholding can be used to create binary images. In thresholding we pick a threshold T.

Grace Ugochi Nneji 3 Feb 15, 2022
Characterizing possible failure modes in physics-informed neural networks.

Characterizing possible failure modes in physics-informed neural networks This repository contains the PyTorch source code for the experiments in the

Aditi Krishnapriyan 55 Jan 02, 2023
Rest API Written In Python To Classify NSFW Images.

✨ NSFW Classifier API ✨ Rest API Written In Python To Classify NSFW Images. Fastest Solution If you don't want to selfhost it, there's already an inst

Akshay Rajput 23 Dec 30, 2022
A novel region proposal network for more general object detection ( including scene text detection ).

DeRPN: Taking a further step toward more general object detection DeRPN is a novel region proposal network which concentrates on improving the adaptiv

Deep Learning and Vision Computing Lab, SCUT 151 Dec 12, 2022
Captcha Recognition

The objective of this project is to recognize the target numbers in the captcha images correctly which would tell us how good or bad a captcha system has been built.

Mohit Kaushik 5 Feb 20, 2022
Python Computer Vision Aim Bot for Roblox's Phantom Forces

Python-Phantom-Forces-Aim-Bot Python Computer Vision Aim Bot for Roblox's Phanto

drag0ngam3s 2 Jul 11, 2022
Using python libraries to track hands

Python-HandTracking Using python libraries to track hands on a camera Uses cv2 and mediapipe libraries custom hand tracking module PyCharm IDE Final E

Martin Matsudaira 1 Dec 17, 2021
Convert PDF/Image to TXT using EasyOcr - the best OCR engine available!

PDFImage2TXT - DOWNLOAD INSTALLER HERE What can you do with it? Convert scanned PDFs to TXT. Convert scanned Documents to TXT. No coding required!! In

Hans Alemão 2 Feb 22, 2022
Code for CVPR 2022 paper "SoftGroup for Instance Segmentation on 3D Point Clouds"

SoftGroup We provide code for reproducing results of the paper SoftGroup for 3D Instance Segmentation on Point Clouds (CVPR 2022) Author: Thang Vu, Ko

Thang Vu 231 Dec 27, 2022
Read-only mirror of https://gitlab.gnome.org/GNOME/ocrfeeder

================================= OCRFeeder - A Complete OCR Suite ================================= OCRFeeder is a complete Optical Character Recogn

GNOME Github Mirror 81 Dec 23, 2022
This Repository contain Opencv Projects in python

Python-Opencv OpenCV OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was

Yash Sakre 2 Nov 06, 2021
Code for paper "Role-based network embedding via structural features reconstruction with degree-regularized constraint"

Role-based network embedding via structural features reconstruction with degree-regularized constraint Train python main.py --dataset brazil-flights

wang zhang 1 Jun 28, 2022
Unofficial implementation of "TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from Scanned Document Images"

TableNet Unofficial implementation of ICDAR 2019 paper : TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from

Jainam Shah 243 Dec 30, 2022
This is the implementation of the paper "Gated Recurrent Convolution Neural Network for OCR"

Gated Recurrent Convolution Neural Network for OCR This project is an implementation of the GRCNN for OCR. For details, please refer to the paper: htt

90 Dec 22, 2022
Code related to "Have Your Text and Use It Too! End-to-End Neural Data-to-Text Generation with Semantic Fidelity" paper

DataTuner You have just found the DataTuner. This repository provides tools for fine-tuning language models for a task. See LICENSE.txt for license de

81 Jan 01, 2023
Code for CVPR'2022 paper ✨ "Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-Language Model"

PPE ✨ Repository for our CVPR'2022 paper: Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-

Zipeng Xu 34 Nov 28, 2022
第一届西安交通大学人工智能实践大赛(2018AI实践大赛--图片文字识别)第一名;仅采用densenet识别图中文字

OCR 第一届西安交通大学人工智能实践大赛(2018AI实践大赛--图片文字识别)冠军 模型结果 该比赛计算每一个条目的f1score,取所有条目的平均,具体计算方式在这里。这里的计算方式不对一句话里的相同文字重复计算,故f1score比提交的最终结果低: - train val f1score 0

尹畅 441 Dec 22, 2022
TextBoxes++: A Single-Shot Oriented Scene Text Detector

TextBoxes++: A Single-Shot Oriented Scene Text Detector Introduction This is an application for scene text detection (TextBoxes++) and recognition (CR

Minghui Liao 930 Jan 04, 2023