Visual Attention based OCR

Overview

Attention-OCR

Authours: Qi Guo and Yuntian Deng

Visual Attention based OCR. The model first runs a sliding CNN on the image (images are resized to height 32 while preserving aspect ratio). Then an LSTM is stacked on top of the CNN. Finally, an attention model is used as a decoder for producing the final outputs.

example image 0

Prerequsites

Most of our code is written based on Tensorflow, but we also use Keras for the convolution part of our model. Besides, we use python package distance to calculate edit distance for evaluation. (However, that is not mandatory, if distance is not installed, we will do exact match).

Tensorflow: Installation Instructions (tested on 0.12.1)

Distance (Optional):

wget http://www.cs.cmu.edu/~yuntiand/Distance-0.1.3.tar.gz
tar zxf Distance-0.1.3.tar.gz
cd distance; sudo python setup.py install

Usage:

Note: We assume that the working directory is Attention-OCR.

Train

Data Preparation

We need a file (specified by parameter data-path) containing the path of images and the corresponding characters, e.g.:

path/to/image1 abc
path/to/image2 def

And we also need to specify a data-base-dir parameter such that we read the images from path data-base-dir/path/to/image. If data-path contains absolute path of images, then data-base-dir needs to be set to /.

A Toy Example

For a toy example, we have prepared a training dataset of the specified format, which is a subset of Synth 90k

wget http://www.cs.cmu.edu/~yuntiand/sample.tgz
tar zxf sample.tgz
python src/launcher.py --phase=train --data-path=sample/sample.txt --data-base-dir=sample --log-path=log.txt --no-load-model

After a while, you will see something like the following output in log.txt:

...
2016-06-08 20:47:22,335 root  INFO     Created model with fresh parameters.
2016-06-08 20:47:52,852 root  INFO     current_step: 0
2016-06-08 20:48:01,253 root  INFO     step_time: 8.400597, step perplexity: 38.998714
2016-06-08 20:48:01,385 root  INFO     current_step: 1
2016-06-08 20:48:07,166 root  INFO     step_time: 5.781749, step perplexity: 38.998445
2016-06-08 20:48:07,337 root  INFO     current_step: 2
2016-06-08 20:48:12,322 root  INFO     step_time: 4.984972, step perplexity: 39.006730
2016-06-08 20:48:12,347 root  INFO     current_step: 3
2016-06-08 20:48:16,821 root  INFO     step_time: 4.473902, step perplexity: 39.000267
2016-06-08 20:48:16,859 root  INFO     current_step: 4
2016-06-08 20:48:21,452 root  INFO     step_time: 4.593249, step perplexity: 39.009864
2016-06-08 20:48:21,530 root  INFO     current_step: 5
2016-06-08 20:48:25,878 root  INFO     step_time: 4.348195, step perplexity: 38.987707
2016-06-08 20:48:26,016 root  INFO     current_step: 6
2016-06-08 20:48:30,851 root  INFO     step_time: 4.835423, step perplexity: 39.022887

Note that it takes quite a long time to reach convergence, since we are training the CNN and attention model simultaneously.

Test and visualize attention results

The test data format shall be the same as training data format. We have also prepared a test dataset of the specified format, which includes ICDAR03, ICDAR13, IIIT5k and SVT.

wget http://www.cs.cmu.edu/~yuntiand/evaluation_data.tgz
tar zxf evaluation_data.tgz

We also provide a trained model on Synth 90K:

wget http://www.cs.cmu.edu/~yuntiand/model.tgz
tar zxf model.tgz
python src/launcher.py --phase=test --visualize --data-path=evaluation_data/svt/test.txt --data-base-dir=evaluation_data/svt --log-path=log.txt --load-model --model-dir=model --output-dir=results

After a while, you will see something like the following output in log.txt:

2016-06-08 22:36:31,638 root  INFO     Reading model parameters from model/translate.ckpt-47200
2016-06-08 22:36:40,529 root  INFO     Compare word based on edit distance.
2016-06-08 22:36:41,652 root  INFO     step_time: 1.119277, step perplexity: 1.056626
2016-06-08 22:36:41,660 root  INFO     1.000000 out of 1 correct
2016-06-08 22:36:42,358 root  INFO     step_time: 0.696687, step perplexity: 2.003350
2016-06-08 22:36:42,363 root  INFO     1.666667 out of 2 correct
2016-06-08 22:36:42,831 root  INFO     step_time: 0.466550, step perplexity: 1.501963
2016-06-08 22:36:42,835 root  INFO     2.466667 out of 3 correct
2016-06-08 22:36:43,402 root  INFO     step_time: 0.562091, step perplexity: 1.269991
2016-06-08 22:36:43,418 root  INFO     3.366667 out of 4 correct
2016-06-08 22:36:43,897 root  INFO     step_time: 0.477545, step perplexity: 1.072437
2016-06-08 22:36:43,905 root  INFO     4.366667 out of 5 correct
2016-06-08 22:36:44,107 root  INFO     step_time: 0.195361, step perplexity: 2.071796
2016-06-08 22:36:44,127 root  INFO     5.144444 out of 6 correct

Example output images in results/correct (the output directory is set via parameter output-dir and the default is results): (Look closer to see it clearly.)

Format: Image index (predicted/ground truth) Image file

Image 0 (j/j): example image 0

Image 1 (u/u): example image 1

Image 2 (n/n): example image 2

Image 3 (g/g): example image 3

Image 4 (l/l): example image 4

Image 5 (e/e): example image 5

Parameters:

  • Control

    • phase: Determine whether to train or test.
    • visualize: Valid if phase is set to test. Output the attention maps on the original image.
    • load-model: Load model from model-dir or not.
  • Input and output

    • data-base-dir: The base directory of the image path in data-path. If the image path in data-path is absolute path, set it to /.
    • data-path: The path containing data file names and labels. Format per line: image_path characters.
    • model-dir: The directory for saving and loading model parameters (structure is not stored).
    • log-path: The path to put log.
    • output-dir: The path to put visualization results if visualize is set to True.
    • steps-per-checkpoint: Checkpointing (print perplexity, save model) per how many steps
  • Optimization

    • num-epoch: The number of whole data passes.
    • batch-size: Batch size. Only valid if phase is set to train.
    • initial-learning-rate: Initial learning rate, note the we use AdaDelta, so the initial value doe not matter much.
  • Network

    • target-embedding-size: Embedding dimension for each target.
    • attn-use-lstm: Whether or not use LSTM attention decoder cell.
    • attn-num-hidden: Number of hidden units in attention decoder cell.
    • attn-num-layers: Number of layers in attention decoder cell. (Encoder number of hidden units will be attn-num-hidden*attn-num-layers).
    • target-vocab-size: Target vocabulary size. Default is = 26+10+3 # 0: PADDING, 1: GO, 2: EOS, >2: 0-9, a-z

References

Convert a formula to its LaTex source

What You Get Is What You See: A Visual Markup Decompiler

Torch attention OCR

Owner
Yuntian Deng
Yuntian Deng
Autonomous Driving project for Euro Truck Simulator 2

hope-autonomous-driving Autonomous Driving project for Euro Truck Simulator 2 Video: How is it working ? In this video, the program processes the imag

Umut Görkem Kocabaş 36 Nov 06, 2022
This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries.

CVZone This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe librar

CVZone 648 Dec 30, 2022
3点クリックで円を指定し、極座標変換を行うサンプルプログラム

click-warpPolar 3点クリックで円を指定し、極座標変換を行うサンプルプログラムです。 Requirements OpenCV 3.4.2 or Later Usage 実行方法は以下です。 起動後、マウスで3点をクリックし円を指定してください。 python click-warpPol

KazuhitoTakahashi 17 Dec 30, 2022
TableBank: A Benchmark Dataset for Table Detection and Recognition

TableBank TableBank is a new image-based table detection and recognition dataset built with novel weak supervision from Word and Latex documents on th

844 Jan 04, 2023
This Repository contain Opencv Projects in python

Python-Opencv OpenCV OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was

Yash Sakre 2 Nov 06, 2021
Scan the MRZ code of a passport and extract the firstname, lastname, passport number, nationality, date of birth, expiration date and personal numer.

PassportScanner Works with 2 and 3 line identity documents. What is this With PassportScanner you can use your camera to scan the MRZ code of a passpo

Edwin Vermeer 441 Dec 24, 2022
An unofficial package help developers to implement ZATCA (Fatoora) QR code easily which required for e-invoicing

ZATCA (Fatoora) QR-Code Implementation An unofficial package help developers to implement ZATCA (Fatoora) QR code easily which required for e-invoicin

TheAwiteb 28 Nov 03, 2022
基于Paddle框架的PSENet复现

PSENet-Paddle 基于Paddle框架的PSENet复现 本项目基于paddlepaddle框架复现PSENet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 AIStudio链接 参考项目: whai362-PSENet 环境配置 本项目

QuanHao Guo 4 Apr 24, 2022
Text to QR-CODE

QR CODE GENERATO USING PYTHON Author : RAFIK BOUDALIA. Installation Use the package manager pip to install foobar. pip install pyqrcode Usage from tki

Rafik Boudalia 2 Oct 13, 2021
A facial recognition program that plays a alarm (mp3 file) when a person i seen in the room. A basic theif using Python and OpenCV

Home-Security-Demo A facial recognition program that plays a alarm (mp3 file) when a person is seen in the room. A basic theif using Python and OpenCV

SysKey 4 Nov 02, 2021
Face Recognizer using Opencv Python

Face Recognizer using Opencv Python The first step create your own dataset with file open-cv-create_dataset second step You can put the photo accordin

Han Izza 2 Nov 16, 2021
Dirty, ugly, and hopefully useful OCR of Facebook Papers docs released by Gizmodo

Quick and Dirty OCR of Facebook Papers Gizmodo has been working through the Facebook Papers and releasing the docs that they process and review. As lu

Bill Fitzgerald 2 Oct 28, 2021
Course material for the Multi-agents and computer graphics course

TC2008B Course material for the Multi-agents and computer graphics course. Setup instructions Strongly recommend using a custom conda environment. Ins

16 Dec 13, 2022
Camelot: PDF Table Extraction for Humans

Camelot: PDF Table Extraction for Humans Camelot is a Python library that makes it easy for anyone to extract tables from PDF files! Note: You can als

Atlan Technologies Pvt Ltd 3.3k Dec 31, 2022
OCR powered screen-capture tool to capture information instead of images

NormCap OCR powered screen-capture tool to capture information instead of images. Links: Repo | PyPi | Releases | Changelog | FAQs Content: Quickstart

575 Dec 31, 2022
Genalog is an open source, cross-platform python package allowing generation of synthetic document images with custom degradations and text alignment capabilities.

Genalog is an open source, cross-platform python package allowing generation of synthetic document images with custom degradations and text alignment capabilities.

Microsoft 235 Dec 22, 2022
Repository for playing the computer vision apps: People analytics on Raspberry Pi.

play-with-torch Repository for playing the computer vision apps: People analytics on Raspberry Pi. Tools Tested Hardware RasberryPi 4 Model B here, RA

eMHa 1 Sep 23, 2021
[ICCV, 2021] Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks

Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks This is an official PyTorch code repository of the paper "Cloud Transformers:

Visual Understanding Lab @ Samsung AI Center Moscow 27 Dec 15, 2022
Comparison-of-OCR (KerasOCR, PyTesseract,EasyOCR)

Optical Character Recognition OCR (Optical Character Recognition) is a technology that enables the conversion of document types such as scanned paper

21 Dec 25, 2022
Sort By Face

Sort-By-Face This is an application with which you can either sort all the pictures by faces from a corpus of photos or retrieve all your photos from

0 Nov 29, 2021