A novel region proposal network for more general object detection ( including scene text detection ).

Overview

DeRPN: Taking a further step toward more general object detection

DeRPN is a novel region proposal network which concentrates on improving the adaptivity of current detectors. The paper is available here.

Recent Update

· Mar. 13, 2019: The DeRPN pretrained models are added.

· Jan. 25, 2019: The code is released.

Contact Us

Welcome to improve DeRPN together. For any questions, please feel free to contact Lele Xie ([email protected]) or Prof. Jin ([email protected]).

Citation

If you find DeRPN useful to your research, please consider citing our paper as follow:

@article{xie2019DeRPN,
  title     = {DeRPN: Taking a further step toward more general object detection},
  author    = {Lele Xie, Yuliang Liu, Lianwen Jin*, Zecheng Xie}
  joural    = {AAAI}
  year      = {2019}
}

Main Results

Note: The reimplemented results are slightly different from those presented in the paper for different training settings, but the conclusions are still consistent. For example, this code doesn't use multi-scale training which should boost the results for both DeRPN and RPN.

COCO-Text

training data: COCO-Text train

test data: COCO-Text test

network [email protected] [email protected] [email protected] [email protected]
RPN+Faster R-CNN VGG16 32.48 52.54 7.40 17.59
DeRPN+Faster R-CNN VGG16 47.39 70.46 11.05 25.12
RPN+R-FCN ResNet-101 37.71 54.35 13.17 22.21
DeRPN+R-FCN ResNet-101 48.62 71.30 13.37 27.57

Pascal VOC

training data: VOC 07+12 trainval

test data: VOC 07 test

Inference time is evaluated on one TITAN XP GPU.

network inference time [email protected] [email protected] AP
RPN+Faster R-CNN VGG16 64 ms 75.53 42.08 42.60
DeRPN+Faster R-CNN VGG16 65 ms 76.17 44.97 43.84
RPN+R-FCN ResNet-101 85 ms 78.87 54.30 50.04
DeRPN+R-FCN (900) * ResNet-101 84 ms 79.21 54.43 50.28

( "*": On Pascal VOC dataset, we found that it is more suitable to train the DeRPN+R-FCN model with 900 proposals. For other experiments, we use the default proposal number to train the models, i.e., 2000 proposals fro Faster R-CNN, 300 proposals for R-FCN. )

MS COCO

training data: COCO 2017 train

test data: COCO 2017 test/val

test set network AP AP50 AP75 APS APM APL
RPN+Faster R-CNN VGG16 24.2 45.4 23.7 7.6 26.6 37.3
DeRPN+Faster R-CNN VGG16 25.5 47.2 25.2 10.3 27.9 36.7
RPN+R-FCN ResNet-101 27.7 47.9 29.0 10.1 30.2 40.1
DeRPN+R-FCN ResNet-101 28.4 49.0 29.5 11.1 31.7 40.5
val set network AP AP50 AP75 APS APM APL
RPN+Faster R-CNN VGG16 24.1 45.0 23.8 7.6 27.8 37.8
DeRPN+Faster R-CNN VGG16 25.5 47.3 25.0 9.9 28.8 37.8
RPN+R-FCN ResNet-101 27.8 48.1 28.8 10.4 31.2 42.5
DeRPN+R-FCN ResNet-101 28.4 48.5 29.5 11.5 32.9 42.0

Getting Started

  1. Requirements
  2. Installation
  3. Preparation for Training & Testing
  4. Usage

Requirements

  1. Cuda 8.0 and cudnn 5.1.
  2. Some python packages: cython, opencv-python, easydict et. al. Simply install them if your system misses these packages.
  3. Configure the caffe according to your environment (Caffe installation instructions). As the code requires pycaffe, caffe should be built with python layers. In Makefile.config, make sure to uncomment this line:
WITH_PYTHON_LAYER := 1
  1. An NVIDIA GPU with more than 6GB is required for ResNet-101.

Installation

  1. Clone the DeRPN repository

    git clone https://github.com/HCIILAB/DeRPN.git
    
  2. Build the Cython modules

    cd $DeRPN_ROOT/lib
    make
  3. Build caffe and pycaffe

    cd $DeRPN_ROOT/caffe
    make -j8 && make pycaffe

Preparation for Training & Testing

Dataset

  1. Download the datasets of Pascal VOC 2007 & 2012, MS COCO 2017 and COCO-Text.

  2. You need to put these datasets under the $DeRPN_ROOT/data folder (with symlinks).

  3. For COCO-Text, the folder structure is as follow:

    $DeRPN_ROOT/data/coco_text/images/train2014
    $DeRPN_ROOT/data/coco_text/images/val2014
    $DeRPN_ROOT/data/coco_text/annotations  
    # train2014, val2014, and annotations are symlinks from /pth_to_coco2014/train2014, 
    # /pth_to_coco2014/val2014 and /pth_to_coco2014/annotations2014/, respectively.
  4. For COCO, the folder structure is as follow:

    $DeRPN_ROOT/data/coco/images/train2017
    $DeRPN_ROOT/data/coco/images/val2017
    $DeRPN_ROOT/data/coco/images/test-dev2017
    $DeRPN_ROOT/data/coco/annotations  
    # the symlinks are similar to COCO-Text
  5. For Pascal VOC, the folder structure is as follow:

    $DeRPN_ROOT/data/VOCdevkit2007
    $DeRPN_ROOT/data/VOCdevkit2012
    #VOCdevkit2007 and VOCdevkit2012 are symlinks from $VOCdevkit whcich contains VOC2007 and VOC2012.

Pretrained models

Please download the ImageNet pretrained models (VGG16 and ResNet-101, password: k4z1), and put them under

$DeRPN_ROOT/data/imagenet_models

We also provide the DeRPN pretrained models here (password: fsd8).

Usage

cd $DeRPN_ROOT
./experiments/scripts/faster_rcnn_derpn_end2end.sh [GPU_ID] [NET] [DATASET]

# e.g., ./experiments/scripts/faster_rcnn_derpn_end2end.sh 0 VGG16 coco_text

Copyright

This code is free to the academic community for research purpose only. For commercial purpose usage, please contact Dr. Lianwen Jin: [email protected].

Owner
Deep Learning and Vision Computing Lab, SCUT
Deep Learning and Vision Computing Lab, SCUT
Polaris is a Face recognition attendance system .

Support Me 🚀 About Polaris 📄 Polaris is a system based on facial recognition with a futuristic GUI design, Can easily find people informations store

XN3UR0N 215 Dec 26, 2022
This is a project to detect gestures to zoom in or out, using the real-time distance between the index finger and the thumb. It's based on OpenCV and Mediapipe.

Pinch-zoom This is a python project based on real-time hand-gesture detection, to zoom in or out, using the distance between the index finger and the

Harshit Bhalla 6 Jul 11, 2022
CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering" official PyTorch implementation.

LED2-Net This is PyTorch implementation of our CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering". Y

Fu-En Wang 83 Jan 04, 2023
Textboxes_plusplus implementation with Tensorflow (python)

TextBoxes++-TensorFlow TextBoxes++ re-implementation using tensorflow. This project is greatly inspired by slim project And many functions are modifie

81 Dec 07, 2022
A simple document layout analysis using Python-OpenCV

Run the application: python main.py *Note: For first time running the application, create a folder named "output". The application is a simple documen

Roinand Aguila 109 Dec 12, 2022
ISI's Optical Character Recognition (OCR) software for machine-print and handwriting data

VistaOCR ISI's Optical Character Recognition (OCR) software for machine-print and handwriting data Publications "How to Efficiently Increase Resolutio

ISI Center for Vision, Image, Speech, and Text Analytics 21 Dec 08, 2021
Read Japanese manga inside browser with selectable text.

mokuro Read Japanese manga with selectable text inside a browser. See demo: https://kha-white.github.io/manga-demo mokuro_demo.mp4 Demo contains excer

Maciej Budyś 170 Dec 27, 2022
https://arxiv.org/abs/1904.01941

Character-Region-Awareness-for-Text-Detection- https://arxiv.org/abs/1904.01941 Train You can train SynthText data use python source/train_SynthText.p

DayDayUp 120 Dec 28, 2022
Motion detector, Full body detection, Upper body detection, Cat face detection, Smile detection, Face detection (haar cascade), Silverware detection, Face detection (lbp), and Sending email notifications

Security camera running OpenCV for object and motion detection. The camera will send email with image of any objects it detects. It also runs a server that provides web interface with live stream vid

Peace 10 Jun 30, 2021
Code for the paper "DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks" (ICCV '19)

DewarpNet This repository contains the codes for DewarpNet training. Recent Updates [May, 2020] Added evaluation images and an important note about Ma

<a href=[email protected]"> 354 Jan 01, 2023
OCR-D-compliant page segmentation

ocrd_segment This repository aims to provide a number of OCR-D-compliant processors for layout analysis and evaluation. Installation In your virtual e

OCR-D 59 Sep 10, 2022
Play the Namibian game of Owela against a terrible AI. Built using Django and htmx.

Owela Club A Django project for playing the Namibian game of Owela against a dumb AI. Built following the rules described on the Mancala World wiki pa

Adam Johnson 18 Jun 01, 2022
轻量级公式 OCR 小工具:一键识别各类公式图片,并转换为 LaTeX 格式

QC-Formula | 青尘公式 OCR 介绍 轻量级开源公式 OCR 小工具:一键识别公式图片,并转换为 LaTeX 格式。 支持从 电脑本地 导入公式图片;(后续版本将支持直接从网页导入图片) 公式图片支持 .png / .jpg / .bmp,大小为 4M 以内均可; 支持印刷体及手写体,前

青尘工作室 26 Jan 07, 2023
Discord QR Scam Code Generator + Token grab mobile device.

A Python script that automatically generates a Nitro scam QR code and grabs the Discord token when scanned.

Visual 9 Nov 22, 2022
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
Convert scans of handwritten notes to beautiful, compact PDFs

Convert scans of handwritten notes to beautiful, compact PDFs

Matt Zucker 4.8k Jan 01, 2023
Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Vedaldi, Andrew Zisserman, CVPR 2016.

SynthText Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Ved

Ankush Gupta 1.8k Dec 28, 2022
【Auto】原神⭐钓鱼辅助工具 | 自动收竿、校准游标 | ✨您只需要抛出鱼竿,我们会帮你完成一切✨

原神钓鱼辅助工具 ✨ 作者正在努力重构代码中……会尽快带给大家一个更完美的脚本 ✨ 「您只需抛出鱼竿,然后我们会帮您搞定一切」 如果你觉得这个脚本好用,请点一个 Star ⭐ ,你的 Star 就是作者更新最大的动力 点击这里 查看演示视频 ✨ 欢迎大家在 Issues 中分享自己的配置文件 ✨ ✨

261 Jan 02, 2023
Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. This Neural Network (NN) model recognizes the text contained in the images of segmented words.

Handwritten-Text-Recognition Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. T

27 Jan 08, 2023
RRD: Rotation-Sensitive Regression for Oriented Scene Text Detection

RRD: Rotation-Sensitive Regression for Oriented Scene Text Detection For more details, please refer to our paper. Citing Please cite the related works

Minghui Liao 102 Jun 29, 2022