Create matplotlib visualizations from the command-line

Overview

MatplotCLI

Create matplotlib visualizations from the command-line

MatplotCLI is a simple utility to quickly create plots from the command-line, leveraging Matplotlib.

plt "scatter(x,y,5,alpha=0.05); axis('scaled')" < sample.json

plt "hist(x,30)" < sample.json

MatplotCLI accepts both JSON lines and arrays of JSON objects as input. Look at the recipes section to learn how to handle other formats like CSV.

MatplotCLI executes python code (passed as argument) where some handy imports are already done (e.g. from matplotlib.pyplot import *) and where the input JSON data is already parsed and available in variables, making plotting easy. Please refer to matplotlib.pyplot's reference and tutorial for comprehensive documentation about the plotting commands.

Data from the input JSON is made available in the following way. Given the input myfile.json:

{"a": 1, "b": 2}
{"a": 10, "b": 20}
{"a": 30, "c$d": 40}

The following variables are made available:

data = {
    "a": [1, 10, 30],
    "b": [2, 20, None],
    "c_d": [None, None, 40]
}

a = [1, 10, 30]
b = [2, 20, None]
c_d = [None, None, 40]

col_names = ("a", "b", "c_d")

So, for a scatter plot a vs b, you could simply do:

plt "scatter(a,b); title('a vs b')" < myfile.json

Notice that the names of JSON properties are converted into valid Python identifiers whenever they are not (e.g. c$d was converted into c_d).

Execution flow

  1. Import matplotlib and other libs;
  2. Read JSON data from standard input;
  3. Execute user code;
  4. Show the plot.

All steps (except step 3) can be skipped through command-line options.

Installation

The easiest way to install MatplotCLI is from pip:

pip install matplotcli

Recipes and Examples

Plotting JSON data

MatplotCLI natively supports JSON lines:

echo '
    {"a":0, "b":1}
    {"a":1, "b":0}
    {"a":3, "b":3}' |
plt "plot(a,b)"

and arrays of JSON objects:

echo '[
    {"a":0, "b":1},
    {"a":1, "b":0},
    {"a":3, "b":3}]' |
plt "plot(a,b)"

Plotting from a csv

SPyQL is a data querying tool that allows running SQL queries with Python expressions on top of different data formats. Here, SPyQL is reading a CSV file, automatically detecting if there's an header row, the dialect and the data type of each column, and converting the output to JSON lines before handing over to MatplotCLI.

cat my.csv | spyql "SELECT * FROM csv TO json" | plt "plot(x,y)"

Plotting from a yaml/xml/toml

yq converts yaml, xml and toml files to json, allowing to easily plot any of these with MatplotCLI.

cat file.yaml | yq -c | plt "plot(x,y)"
cat file.xml | xq -c | plt "plot(x,y)"
cat file.toml | tomlq -c | plt "plot(x,y)"

Plotting from a parquet file

parquet-tools allows dumping a parquet file to JSON format. jq -c makes sure that the output has 1 JSON object per line before handing over to MatplotCLI.

parquet-tools cat --json my.parquet | jq -c | plt "plot(x,y)"

Plotting from a database

Databases CLIs typically have an option to output query results in CSV format (e.g. psql --csv -c query for PostgreSQL, sqlite3 -csv -header file.db query for SQLite).

Here we are visualizing how much space each namespace is taking in a PostgreSQL database. SPyQL converts CSV output from the psql client to JSON lines, and makes sure there are no more than 10 items, aggregating the smaller namespaces in an All others category. Finally, MatplotCLI makes a pie chart based on the space each namespace is taking.

psql -U myuser mydb --csv  -c '
    SELECT
        N.nspname,
        sum(pg_relation_size(C.oid))*1e-6 AS size_mb
    FROM pg_class C
    LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)
    GROUP BY 1
    ORDER BY 2 DESC' |
spyql "
    SELECT
        nspname if row_number < 10 else 'All others' as name,
        sum_agg(size_mb) AS size_mb
    FROM csv
    GROUP BY 1
    TO json" |
plt "
nice_labels = ['{0}\n{1:,.0f} MB'.format(n,s) for n,s in zip(name,size_mb)];
pie(size_mb, labels=nice_labels, autopct='%1.f%%', pctdistance=0.8, rotatelabels=True)"

Plotting a function

Disabling reading from stdin and generating the output using numpy.

plt --no-input "
x = np.linspace(-1,1,2000);
y = x*np.sin(1/x);
plot(x,y);
axis('scaled');
grid(True)"

Saving the plot to an image

Saving the output without showing the interactive window.

cat sample.json |
plt --no-show "
hist(x,30);
savefig('myimage.png', bbox_inches='tight')"

Plot of the global temperature

Here's a complete pipeline from getting the data to transforming and plotting it:

  1. Downloading a CSV file with curl;
  2. Skipping the first row with sed;
  3. Grabbing the year column and 12 columns with monthly temperatures to an array and converting to JSON lines format using SPyQL;
  4. Exploding the monthly array with SPyQL (resulting in 12 rows per year) while removing invalid monthly measurements;
  5. Plotting with MatplotCLI .
curl https://data.giss.nasa.gov/gistemp/tabledata_v4/GLB.Ts+dSST.csv |
sed 1d |
spyql "
  SELECT Year, cols[1:13] AS temps
  FROM csv
  TO json" |
spyql "
  SELECT
    json->Year + ((row_number-1)%12)/12 AS year,
    json->temps AS temp
  FROM json
  EXPLODE json->temps
  WHERE json->temps is not Null
  TO json" |
plt "
scatter(year, temp, 2, temp);
xlabel('Year');
ylabel('Temperature anomaly w.r.t. 1951-80 (ºC)');
title('Global surface temperature (land and ocean)')"

You might also like...
These data visualizations were created for my introductory computer science course using Python
These data visualizations were created for my introductory computer science course using Python

Homework 2: Matplotlib and Data Visualization Overview These data visualizations were created for my introductory computer science course using Python

These data visualizations were created as homework for my CS40 class. I hope you enjoy!
These data visualizations were created as homework for my CS40 class. I hope you enjoy!

Data Visualizations These data visualizations were created as homework for my CS40 class. I hope you enjoy! Nobel Laureates by their Country of Birth

Generate visualizations of GitHub user and repository statistics using GitHub Actions.

GitHub Stats Visualization Generate visualizations of GitHub user and repository statistics using GitHub Actions. This project is currently a work-in-

A Python package for caclulations and visualizations in geological sciences.

geo_calcs A Python package for caclulations and visualizations in geological sciences. Free software: MIT license Documentation: https://geo-calcs.rea

Make scripted visualizations in blender
Make scripted visualizations in blender

Scripted visualizations in blender The goal of this project is to script 3D scientific visualizations using blender. To achieve this, we aim to bring

Standardized plots and visualizations in Python
Standardized plots and visualizations in Python

Standardized plots and visualizations in Python pltviz is a Python package for standardized visualization. Routine and novel plotting approaches are f

Generate visualizations of GitHub user and repository statistics using GitHub Actions.

GitHub Stats Visualization Generate visualizations of GitHub user and repository statistics using GitHub Actions. This project is currently a work-in-

Visualizations of some specific solutions of different differential equations.
Visualizations of some specific solutions of different differential equations.

Diff_sims Visualizations of some specific solutions of different differential equations. Heat Equation in 1 Dimension (A very beautiful and elegant ex

Data aggregated from the reports found at the MCPS COVID Dashboard into a set of visualizations.

Montgomery County Public Schools COVID-19 Visualizer Contents About this project Data Support this project About this project Data All data we use can

Comments
  • stats about input data

    stats about input data

    option to print simple statistics about the input data. e.g. for each field

    • number of missing values
    • number of distinct values
    • avg, min, max (if numeric)
    • number of nan, inf (if float)
    • ...
    enhancement good first issue 
    opened by dcmoura 0
Releases(v0.2.0)
Owner
Daniel Moura
Daniel Moura
A minimal Python package that produces slice plots through h5m DAGMC geometry files

A minimal Python package that produces slice plots through h5m DAGMC geometry files Installation pip install dagmc_geometry_slice_plotter Python API U

Fusion Energy 4 Dec 02, 2022
Area-weighted venn-diagrams for Python/matplotlib

Venn diagram plotting routines for Python/Matplotlib Routines for plotting area-weighted two- and three-circle venn diagrams. Installation The simples

Konstantin Tretyakov 400 Dec 31, 2022
🐍PyNode Next allows you to easily create beautiful graph visualisations and animations

PyNode Next A complete rewrite of PyNode for the modern era. Up to five times faster than the original PyNode. PyNode Next allows you to easily create

ehne 3 Feb 12, 2022
Simple addon for snapping active object to mesh ground

Snap to Ground Simple addon for snapping active object to mesh ground How to install: install the Python file as an addon use shortcut "D" in 3D view

Iyad Ahmed 12 Nov 07, 2022
Graphical display tools, to help students debug their class implementations in the Carcassonne family of projects

carcassonne_tools Graphical display tools, to help students debug their class implementations in the Carcassonne family of projects NOTE NOTE NOTE The

1 Nov 08, 2021
Manim is an animation engine for explanatory math videos.

A community-maintained Python framework for creating mathematical animations.

12.4k Dec 30, 2022
Mapomatic - Automatic mapping of compiled circuits to low-noise sub-graphs

mapomatic Automatic mapping of compiled circuits to low-noise sub-graphs Overvie

Qiskit Partners 27 Nov 06, 2022
Visualize data of Vietnam's regions with interactive maps.

Plotting Vietnam Development Map This is my personal project that I use plotly to analyse and visualize data of Vietnam's regions with interactive map

1 Jun 26, 2022
Project coded in Python using Pandas to look at changes in chase% for batters facing a pitcher first time through the order vs. thrid time

Project coded in Python using Pandas to look at changes in chase% for batters facing a pitcher first time through the order vs. thrid time

Jason Kraynak 1 Jan 07, 2022
Visualizations for machine learning datasets

Introduction The facets project contains two visualizations for understanding and analyzing machine learning datasets: Facets Overview and Facets Dive

PAIR code 7.1k Jan 07, 2023
An animation engine for explanatory math videos

Powered By: An animation engine for explanatory math videos Hi there, I'm Zheer 👋 I'm a Software Engineer and student!! 🌱 I’m currently learning eve

Zaheer ud Din Faiz 2 Nov 04, 2021
With Holoviews, your data visualizes itself.

HoloViews Stop plotting your data - annotate your data and let it visualize itself. HoloViews is an open-source Python library designed to make data a

HoloViz 2.3k Jan 04, 2023
GitHub Stats Visualizations : Transparent

GitHub Stats Visualizations : Transparent Generate visualizations of GitHub user and repository statistics using GitHub Actions. ⚠️ Disclaimer The pro

YuanYap 7 Apr 05, 2022
A small tool to test and visualize protein embeddings and amino acid proportions.

polyprotein_stats A small tool to test and visualize protein embeddings and amino acid proportions. Currently deployed on streamlit.io. Given a set of

2 Jan 07, 2023
Fast 1D and 2D histogram functions in Python

About Sometimes you just want to compute simple 1D or 2D histograms with regular bins. Fast. No nonsense. Numpy's histogram functions are versatile, a

Thomas Robitaille 237 Dec 18, 2022
Geospatial Data Visualization using PyGMT

Example script to visualize topographic data, earthquake data, and tomographic data on a map

Utpal Kumar 2 Jul 30, 2022
Define fortify and autoplot functions to allow ggplot2 to handle some popular R packages.

ggfortify This package offers fortify and autoplot functions to allow automatic ggplot2 to visualize statistical result of popular R packages. Check o

Sinhrks 504 Dec 23, 2022
Simple Python interface for Graphviz

Simple Python interface for Graphviz

Sebastian Bank 1.3k Dec 26, 2022
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 01, 2023
Example scripts for generating plots of Bohemian matrices

Bohemian Eigenvalue Plotting Examples This repository contains examples of generating plots of Bohemian eigenvalues. The examples in this repository a

Bohemian Matrices 5 Nov 12, 2022