Create matplotlib visualizations from the command-line

Overview

MatplotCLI

Create matplotlib visualizations from the command-line

MatplotCLI is a simple utility to quickly create plots from the command-line, leveraging Matplotlib.

plt "scatter(x,y,5,alpha=0.05); axis('scaled')" < sample.json

plt "hist(x,30)" < sample.json

MatplotCLI accepts both JSON lines and arrays of JSON objects as input. Look at the recipes section to learn how to handle other formats like CSV.

MatplotCLI executes python code (passed as argument) where some handy imports are already done (e.g. from matplotlib.pyplot import *) and where the input JSON data is already parsed and available in variables, making plotting easy. Please refer to matplotlib.pyplot's reference and tutorial for comprehensive documentation about the plotting commands.

Data from the input JSON is made available in the following way. Given the input myfile.json:

{"a": 1, "b": 2}
{"a": 10, "b": 20}
{"a": 30, "c$d": 40}

The following variables are made available:

data = {
    "a": [1, 10, 30],
    "b": [2, 20, None],
    "c_d": [None, None, 40]
}

a = [1, 10, 30]
b = [2, 20, None]
c_d = [None, None, 40]

col_names = ("a", "b", "c_d")

So, for a scatter plot a vs b, you could simply do:

plt "scatter(a,b); title('a vs b')" < myfile.json

Notice that the names of JSON properties are converted into valid Python identifiers whenever they are not (e.g. c$d was converted into c_d).

Execution flow

  1. Import matplotlib and other libs;
  2. Read JSON data from standard input;
  3. Execute user code;
  4. Show the plot.

All steps (except step 3) can be skipped through command-line options.

Installation

The easiest way to install MatplotCLI is from pip:

pip install matplotcli

Recipes and Examples

Plotting JSON data

MatplotCLI natively supports JSON lines:

echo '
    {"a":0, "b":1}
    {"a":1, "b":0}
    {"a":3, "b":3}' |
plt "plot(a,b)"

and arrays of JSON objects:

echo '[
    {"a":0, "b":1},
    {"a":1, "b":0},
    {"a":3, "b":3}]' |
plt "plot(a,b)"

Plotting from a csv

SPyQL is a data querying tool that allows running SQL queries with Python expressions on top of different data formats. Here, SPyQL is reading a CSV file, automatically detecting if there's an header row, the dialect and the data type of each column, and converting the output to JSON lines before handing over to MatplotCLI.

cat my.csv | spyql "SELECT * FROM csv TO json" | plt "plot(x,y)"

Plotting from a yaml/xml/toml

yq converts yaml, xml and toml files to json, allowing to easily plot any of these with MatplotCLI.

cat file.yaml | yq -c | plt "plot(x,y)"
cat file.xml | xq -c | plt "plot(x,y)"
cat file.toml | tomlq -c | plt "plot(x,y)"

Plotting from a parquet file

parquet-tools allows dumping a parquet file to JSON format. jq -c makes sure that the output has 1 JSON object per line before handing over to MatplotCLI.

parquet-tools cat --json my.parquet | jq -c | plt "plot(x,y)"

Plotting from a database

Databases CLIs typically have an option to output query results in CSV format (e.g. psql --csv -c query for PostgreSQL, sqlite3 -csv -header file.db query for SQLite).

Here we are visualizing how much space each namespace is taking in a PostgreSQL database. SPyQL converts CSV output from the psql client to JSON lines, and makes sure there are no more than 10 items, aggregating the smaller namespaces in an All others category. Finally, MatplotCLI makes a pie chart based on the space each namespace is taking.

psql -U myuser mydb --csv  -c '
    SELECT
        N.nspname,
        sum(pg_relation_size(C.oid))*1e-6 AS size_mb
    FROM pg_class C
    LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)
    GROUP BY 1
    ORDER BY 2 DESC' |
spyql "
    SELECT
        nspname if row_number < 10 else 'All others' as name,
        sum_agg(size_mb) AS size_mb
    FROM csv
    GROUP BY 1
    TO json" |
plt "
nice_labels = ['{0}\n{1:,.0f} MB'.format(n,s) for n,s in zip(name,size_mb)];
pie(size_mb, labels=nice_labels, autopct='%1.f%%', pctdistance=0.8, rotatelabels=True)"

Plotting a function

Disabling reading from stdin and generating the output using numpy.

plt --no-input "
x = np.linspace(-1,1,2000);
y = x*np.sin(1/x);
plot(x,y);
axis('scaled');
grid(True)"

Saving the plot to an image

Saving the output without showing the interactive window.

cat sample.json |
plt --no-show "
hist(x,30);
savefig('myimage.png', bbox_inches='tight')"

Plot of the global temperature

Here's a complete pipeline from getting the data to transforming and plotting it:

  1. Downloading a CSV file with curl;
  2. Skipping the first row with sed;
  3. Grabbing the year column and 12 columns with monthly temperatures to an array and converting to JSON lines format using SPyQL;
  4. Exploding the monthly array with SPyQL (resulting in 12 rows per year) while removing invalid monthly measurements;
  5. Plotting with MatplotCLI .
curl https://data.giss.nasa.gov/gistemp/tabledata_v4/GLB.Ts+dSST.csv |
sed 1d |
spyql "
  SELECT Year, cols[1:13] AS temps
  FROM csv
  TO json" |
spyql "
  SELECT
    json->Year + ((row_number-1)%12)/12 AS year,
    json->temps AS temp
  FROM json
  EXPLODE json->temps
  WHERE json->temps is not Null
  TO json" |
plt "
scatter(year, temp, 2, temp);
xlabel('Year');
ylabel('Temperature anomaly w.r.t. 1951-80 (ºC)');
title('Global surface temperature (land and ocean)')"

You might also like...
These data visualizations were created for my introductory computer science course using Python
These data visualizations were created for my introductory computer science course using Python

Homework 2: Matplotlib and Data Visualization Overview These data visualizations were created for my introductory computer science course using Python

These data visualizations were created as homework for my CS40 class. I hope you enjoy!
These data visualizations were created as homework for my CS40 class. I hope you enjoy!

Data Visualizations These data visualizations were created as homework for my CS40 class. I hope you enjoy! Nobel Laureates by their Country of Birth

Generate visualizations of GitHub user and repository statistics using GitHub Actions.

GitHub Stats Visualization Generate visualizations of GitHub user and repository statistics using GitHub Actions. This project is currently a work-in-

A Python package for caclulations and visualizations in geological sciences.

geo_calcs A Python package for caclulations and visualizations in geological sciences. Free software: MIT license Documentation: https://geo-calcs.rea

Make scripted visualizations in blender
Make scripted visualizations in blender

Scripted visualizations in blender The goal of this project is to script 3D scientific visualizations using blender. To achieve this, we aim to bring

Standardized plots and visualizations in Python
Standardized plots and visualizations in Python

Standardized plots and visualizations in Python pltviz is a Python package for standardized visualization. Routine and novel plotting approaches are f

Generate visualizations of GitHub user and repository statistics using GitHub Actions.

GitHub Stats Visualization Generate visualizations of GitHub user and repository statistics using GitHub Actions. This project is currently a work-in-

Visualizations of some specific solutions of different differential equations.
Visualizations of some specific solutions of different differential equations.

Diff_sims Visualizations of some specific solutions of different differential equations. Heat Equation in 1 Dimension (A very beautiful and elegant ex

Data aggregated from the reports found at the MCPS COVID Dashboard into a set of visualizations.

Montgomery County Public Schools COVID-19 Visualizer Contents About this project Data Support this project About this project Data All data we use can

Comments
  • stats about input data

    stats about input data

    option to print simple statistics about the input data. e.g. for each field

    • number of missing values
    • number of distinct values
    • avg, min, max (if numeric)
    • number of nan, inf (if float)
    • ...
    enhancement good first issue 
    opened by dcmoura 0
Releases(v0.2.0)
Owner
Daniel Moura
Daniel Moura
visualize_ML is a python package made to visualize some of the steps involved while dealing with a Machine Learning problem

visualize_ML visualize_ML is a python package made to visualize some of the steps involved while dealing with a Machine Learning problem. It is build

Ayush Singh 164 Dec 12, 2022
Graphing communities on Twitch.tv in a visually intuitive way

VisualizingTwitchCommunities This project maps communities of streamers on Twitch.tv based on shared viewership. The data is collected from the Twitch

Kiran Gershenfeld 312 Jan 07, 2023
A simple interpreted language for creating basic mathematical graphs.

graphr Introduction graphr is a small language written to create basic mathematical graphs. It is an interpreted language written in python and essent

2 Dec 26, 2021
Seismic Waveform Inversion Toolbox-1.0

Seismic Waveform Inversion Toolbox (SWIT-1.0)

Haipeng Li 98 Dec 29, 2022
Make scripted visualizations in blender

Scripted visualizations in blender The goal of this project is to script 3D scientific visualizations using blender. To achieve this, we aim to bring

Praneeth Namburi 10 Jun 01, 2022
Visualization Data Drug in thailand during 2014 to 2020

Visualization Data Drug in thailand during 2014 to 2020 Data sorce from ข้อมูลเปิดภาครัฐ สำนักงาน ป.ป.ส Inttroducing program Using tkinter module for

Narongkorn 1 Jan 05, 2022
Type-safe YAML parser and validator.

StrictYAML StrictYAML is a type-safe YAML parser that parses and validates a restricted subset of the YAML specification. Priorities: Beautiful API Re

Colm O'Connor 1.2k Jan 04, 2023
CONTRIBUTIONS ONLY: Voluptuous, despite the name, is a Python data validation library.

CONTRIBUTIONS ONLY What does this mean? I do not have time to fix issues myself. The only way fixes or new features will be added is by people submitt

Alec Thomas 1.8k Dec 31, 2022
patchwork for matplotlib

patchworklib patchwork for matplotlib test code Preparation of example plots import seaborn as sns import numpy as np import pandas as pd #Bri

Mori Hideto 185 Jan 06, 2023
🌀❄️🌩️ This repository contains some examples for creating 2d and 3d weather plots using matplotlib and cartopy libraries in python3.

Weather-Plotting 🌀 ❄️ 🌩️ This repository contains some examples for creating 2d and 3d weather plots using matplotlib and cartopy libraries in pytho

Giannis Dravilas 21 Dec 10, 2022
Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver

Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver, the wheel size, gear shifting sequence by modeling drivetrain constrai

Sabbella Prasanna 1 Jan 11, 2022
Visualization of the World Religion Data dataset by Correlates of War Project.

World Religion Data Visualization Visualization of the World Religion Data dataset by Correlates of War Project. Mostly personal project to famirializ

Emile Bangma 1 Oct 15, 2022
Epagneul is a tool to visualize and investigate windows event logs

epagneul Epagneul is a tool to visualize and investigate windows event logs. Dep

jurelou 190 Dec 13, 2022
Automatization of BoxPlot graph usin Python MatPlotLib and Excel

BoxPlotGraphAutomation Automatization of BoxPlot graph usin Python / Excel. This file is an automation of BoxPlot-Graph using python graph library mat

EricAugustin 1 Feb 07, 2022
哔咔漫画window客户端,界面使用PySide2,已实现分类、搜索、收藏夹、下载、在线观看、waifu2x等功能。

picacomic-windows 哔咔漫画window客户端,界面使用PySide2,已实现分类、搜索、收藏夹、下载、在线观看等功能。 功能介绍 登陆分流,还原安卓端的三个分流入口 分类,搜索,排行,收藏夹使用同一的逻辑,滚轮下滑自动加载下一页,双击打开 漫画详情,章节列表和评论列表 下载功能,目

1.8k Dec 31, 2022
This is a web application to visualize various famous technical indicators and stocks tickers from user

Visualizing Technical Indicators Using Python and Plotly. Currently facing issues hosting the application on heroku. As soon as I am able to I'll like

4 Aug 04, 2022
University of Missouri - Kansas City: CS451R: Capstone

CS451RC University of Missouri - Kansas City: CS451R: Capstone Installation cd git clone https://github.com/ala2q6/CS451RC.git cd CS451RC pip3 instal

Alex Arbuckle 1 Nov 17, 2021
High-level geospatial data visualization library for Python.

geoplot: geospatial data visualization geoplot is a high-level Python geospatial plotting library. It's an extension to cartopy and matplotlib which m

Aleksey Bilogur 1k Jan 01, 2023
Render tokei's output to interactive sunburst chart.

Render tokei's output to interactive sunburst chart.

134 Dec 15, 2022
Quickly and accurately render even the largest data.

Turn even the largest data into images, accurately Build Status Coverage Latest dev release Latest release Docs Support What is it? Datashader is a da

HoloViz 2.9k Dec 28, 2022