Generate visualizations of GitHub user and repository statistics using GitHub Actions.

Overview

GitHub Stats Visualization

Generate visualizations of GitHub user and repository statistics using GitHub Actions.

This project is currently a work-in-progress; there will always be more interesting stats to display.

Background

When someone views a profile on GitHub, it is often because they are curious about a user's open source projects and contributions. Unfortunately, that user's stars, forks, and pinned repositories do not necessarily reflect the contributions they make to private repositories. The data likewise does not present a complete picture of the user's total contributions beyond the current year.

This project aims to collect a variety of profile and repository statistics using the GitHub API. It then generates images that can be displayed in repository READMEs, or in a user's Profile README.

Since the project runs on GitHub Actions, no server is required to regularly regenerate the images with updated statistics. Likewise, since the user runs the analysis code themselves via GitHub Actions, they can use their GitHub access token to collect statistics on private repositories that an external service would be unable to access.

Disclaimer

If the project is used with an access token that has sufficient permissions to read private repositories, it may leak details about those repositories in error messages. For example, the aiohttp library—used for asynchronous API requests—may include the requested URL in exceptions, which can leak the name of private repositories. If there is an exception caused by aiohttp, this exception will be viewable in the Actions tab of the repository fork, and anyone may be able to see the name of one or more private repositories.

Due to some issues with the GitHub statistics API, there are some situations where it returns inaccurate results. Specifically, the repository view count statistics and total lines of code modified are probably somewhat inaccurate. Unexpectedly, these values will become more accurate over time as GitHub caches statistics for your repositories. Additionally, repositories that were last contributed to more than a year ago may not be included in the statistics due to limitations in the results returned by the API.

For more information on inaccuracies, see issue #2, #3, and #13.

Installation

  1. Create a personal access token (not the default GitHub Actions token) using the instructions here. Personal access token must have permissions: read:user and repo. Copy the access token when it is generated – if you lose it, you will have to regenerate the token.
    • Some users are reporting that it can take a few minutes for the personal access token to work. For more, see #30.
  2. Click here to create a copy of this repository. Note: this is not the same as forking a copy because it copies everything fresh, without the huge commit history.
  3. If this is the README of your fork, click this link to go to the "Secrets" page. Otherwise, go to the "Settings" tab of the newly-created repository and go to the "Secrets" page (bottom left).
  4. Create a new secret with the name ACCESS_TOKEN and paste the copied personal access token as the value.
  5. It is possible to change the type of statistics reported.
    • To ignore certain repos, add them (in owner/name format e.g., jstrieb/github-stats) separated by commas to a new secret—created as before—called EXCLUDED.
    • To ignore certain languages, add them (separated by commas) to a new secret called EXCLUDED_LANGS.
    • To show statistics only for "owned" repositories and not forks with contributions, add an environment variable (under the env header in the main workflow) called EXCLUDE_FORKED_REPOS with a value of true.
  6. Go to the Actions Page and press "Run Workflow" on the right side of the screen to generate images for the first time. The images will be periodically generated every hour, but they can be manually regenerated by manually running the workflow.
  7. Check out the images that have been created in the generated folder.
  8. To add your statistics to your GitHub Profile README, copy and paste the following lines of code into your markdown content. Change the username value to your GitHub username.
    ![](https://github.com/username/github-stats/blob/master/generated/overview.svg)
    ![](https://github.com/username/github-stats/blob/master/generated/languages.svg)
  9. Link back to this repository so that others can generate their own statistics images.
  10. Star this repo if you like it!

Support the Project

There are a few things you can do to support the project:

  • Star the repository (and follow me on GitHub for more)
  • Share and upvote on sites like Twitter, Reddit, and Hacker News
  • Report any bugs, glitches, or errors that you find

These things motivate me to to keep sharing what I build, and they provide validation that my work is appreciated! They also help me improve the project. Thanks in advance!

If you are insistent on spending money to show your support, I encourage you to instead make a generous donation to one of the following organizations. By advocating for Internet freedoms, organizations like these help me to feel comfortable releasing work publicly on the Web.

Related Projects

Owner
JoelImgu
JoelImgu
A D3.js plugin that produces flame graphs from hierarchical data.

d3-flame-graph A D3.js plugin that produces flame graphs from hierarchical data. If you don't know what flame graphs are, check Brendan Gregg's post.

Martin Spier 740 Dec 29, 2022
A python wrapper for creating and viewing effects for Matt Parker's christmas tree.

Christmas Tree Visualizer A python wrapper for creating and viewing effects for Matt Parker's christmas tree. Displays py or csv effect files and allo

4 Nov 22, 2022
Graphical visualizer for spectralyze by Lauchmelder23

spectralyze visualizer Graphical visualizer for spectralyze by Lauchmelder23 Install Install matplotlib and ffmpeg. Put ffmpeg.exe in same folder as v

Matthew 1 Dec 21, 2021
Visualizations of some specific solutions of different differential equations.

Diff_sims Visualizations of some specific solutions of different differential equations. Heat Equation in 1 Dimension (A very beautiful and elegant ex

2 Jan 13, 2022
Some useful extensions for Matplotlib.

mplx Some useful extensions for Matplotlib. Contour plots for functions with discontinuities plt.contour mplx.contour(max_jump=1.0) Matplotlib has pro

Nico Schlömer 519 Dec 30, 2022
A visualization tool made in Pygame for various pathfinding algorithms.

Pathfinding-Visualizer 🚀 A visualization tool made in Pygame for various pathfinding algorithms. Pathfinding is closely related to the shortest path

Aysha sana 7 Jul 09, 2022
By default, networkx has problems with drawing self-loops in graphs.

By default, networkx has problems with drawing self-loops in graphs. It makes it hard to draw a graph with self-loops or to make a nicely looking chord diagram. This repository provides some code to

Vladimir Shitov 5 Jan 06, 2022
Bcc2telegraf: An integration that sends ebpf-based bcc histogram metrics to telegraf daemon

bcc2telegraf bcc2telegraf is an integration that sends ebpf-based bcc histogram

Peter Bobrov 2 Feb 17, 2022
GD-UltraHack - A Mod Menu for Geometry Dash. Specifically a MegahackV5 clone in Python. Only for Windows

GD UltraHack: The Mod Menu that Nobody asked for. This is a mod menu for the gam

zeo 1 Jan 05, 2022
Investment and risk technologies maintained by Fortitudo Technologies.

Fortitudo Technologies Open Source This package allows you to freely explore open-source implementations of some of our fundamental technologies under

Fortitudo Technologies 11 Dec 14, 2022
This is a learning tool and exploration app made using the Dash interactive Python framework developed by Plotly

Support Vector Machine (SVM) Explorer This app has been moved here. This repo is likely outdated and will not be updated. This is a learning tool and

Plotly 150 Nov 03, 2022
Practical-statistics-for-data-scientists - Code repository for O'Reilly book

Code repository Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python by Peter Bruce, Andrew Bruce, and Peter Gedeck Pub

1.7k Jan 04, 2023
Fast scatter density plots for Matplotlib

About Plotting millions of points can be slow. Real slow... 😴 So why not use density maps? ⚡ The mpl-scatter-density mini-package provides functional

Thomas Robitaille 473 Dec 12, 2022
Profile and test to gain insights into the performance of your beautiful Python code

Profile and test to gain insights into the performance of your beautiful Python code View Demo - Report Bug - Request Feature QuickPotato in a nutshel

Joey Hendricks 138 Dec 06, 2022
A TileDB backend for xarray.

TileDB-xarray This library provides a backend engine to xarray using the TileDB Storage Engine. Example usage: import xarray as xr dataset = xr.open_d

TileDB, Inc. 14 Jun 02, 2021
Visualizations for machine learning datasets

Introduction The facets project contains two visualizations for understanding and analyzing machine learning datasets: Facets Overview and Facets Dive

PAIR code 7.1k Jan 07, 2023
A central task in drug discovery is searching, screening, and organizing large chemical databases

A central task in drug discovery is searching, screening, and organizing large chemical databases. Here, we implement clustering on molecular similarity. We support multiple methods to provide a inte

NVIDIA Corporation 124 Jan 07, 2023
A grammar of graphics for Python

plotnine Latest Release License DOI Build Status Coverage Documentation plotnine is an implementation of a grammar of graphics in Python, it is based

Hassan Kibirige 3.3k Jan 01, 2023
Tidy data structures, summaries, and visualisations for missing data

naniar naniar provides principled, tidy ways to summarise, visualise, and manipulate missing data with minimal deviations from the workflows in ggplot

Nicholas Tierney 611 Dec 22, 2022
A minimalistic wrapper around PyOpenGL to save development time

glpy glpy is pyOpenGl wrapper which lets you work with pyOpenGl easily.It is not meant to be a replacement for pyOpenGl but runs on top of pyOpenGl to

Abhinav 9 Apr 02, 2022