Retail-Sim is python package to easily create synthetic dataset of retaile store.

Overview

Retailer's Sale Data Simulation

Retail-Sim is python package to easily create synthetic dataset of retaile store.

Simulation Model

Simulator consists of env, that generates retailer store simulated data.

Modelling PLAN

Products

Create fake products and relationship between them. Relationship between products (Cateogries, to be more precise) consists of "exchangability", "complementarity". Products have many attributes, such as

  • Base Price
  • Base Cost
  • Volume
  • Attractiveness
  • Category
  • Price elasticity
  • Relative Consumption rate
  • Loyalty

Volume implies how much satisfaction it provieds to the customer (How much of a need it subtracts). Volume is proportional to price, which can be set with vol_price_corr.

Products are discretely grouped by some category. Each category has attribute "consumption rate", "general trend", and "seasonal trend". In real life, products such as fresh food, tissues, bottled water would have high consumption rate. General trend is random linear-like trend, seasonal trend is trend of sales that has period of 1 year. In real life, product like icecream would have winter-oriented seasonal trend.

Customers

Every customer has random set of "needs". Just as real life, you might need shampoo, pair of scissors, and some spagetti souce(All of these are considered as one category) Customers will try to fill those needs. As it happens in real life, customers are encourged to buy the product that both satisfy the needs and has a high preference.

Product's Total Attractiveness

Every product comes with the Attractiveness attribute. If it has higher attractiveness, it is more likely to sell. However,

  • If the product is on discount, it will become more attractive.
  • If the product is on discount and it is advertised to be, it will become even more attractive.
  • If the product has high loyalty, it will have very high attractiveness to some customers.
  • There might be some general trend on the attractiveness.

Therefore during simulation, total attractiveness will be defined as:

$$Total = max(\text{Attractiveness} + \text{elasticity} * \text{discounted rate}, B(loyalty) * infty)$$

Customer's state transition

Customers will buy with n budget, where n is pareto distibuted among all customers. They will randomly pick a category depending on their current need distribution. After that, they will buy a product in that category, based on the products' total attractiveness. Buying that product will subtract the customer's need of that category by Volume's amount.

Owner
Corca AI
AI B2B Consulting Company
Corca AI
statDistros is a Python library for dealing with various statistical distributions

StatisticalDistributions statDistros statDistros is a Python library for dealing with various statistical distributions. Now it provides various stati

1 Oct 03, 2021
An Indexer that works out-of-the-box when you have less than 100K stored Documents

U100KIndexer An Indexer that works out-of-the-box when you have less than 100K stored Documents. U100K means under 100K. At 100K stored Documents with

Jina AI 7 Mar 15, 2022
Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Teo Calvo 5 Apr 26, 2022
Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data.

Hatchet Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data. It is intended for analyzing

Lawrence Livermore National Laboratory 14 Aug 19, 2022
ETL pipeline on movie data using Python and postgreSQL

Movies-ETL ETL pipeline on movie data using Python and postgreSQL Overview This project consisted on a automated Extraction, Transformation and Load p

Juan Nicolas Serrano 0 Jul 07, 2021
Office365 (Microsoft365) audit log analysis tool

Office365 (Microsoft365) audit log analysis tool The header describes it all WHY?? The first line of code was written long time before other colleague

Anatoly 1 Jul 27, 2022
ETL flow framework based on Yaml configs in Python

ETL framework based on Yaml configs in Python A light framework for creating data streams. Setting up streams through configuration in the Yaml file.

Павел Максимов 18 Jul 06, 2022
Evaluation of a Monocular Eye Tracking Set-Up

Evaluation of a Monocular Eye Tracking Set-Up As part of my master thesis, I implemented a new state-of-the-art model that is based on the work of Che

Pascal 19 Dec 17, 2022
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
Visions provides an extensible suite of tools to support common data analysis operations

Visions And these visions of data types, they kept us up past the dawn. Visions provides an extensible suite of tools to support common data analysis

168 Dec 28, 2022
simple way to build the declarative and destributed data pipelines with python

unipipeline simple way to build the declarative and distributed data pipelines. Why you should use it Declarative strict config Scaffolding Fully type

aliaksandr-master 0 Jan 26, 2022
Common bioinformatics database construction

biodb Common bioinformatics database construction 1.taxonomy (Substance classification database) Download the database wget -c https://ftp.ncbi.nlm.ni

sy520 2 Jan 04, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Dec 25, 2022
A crude Hy handle on Pandas library

Quickstart Hyenas is a curde Hy handle written on top of Pandas API to allow for more elegant access to data-scientist's powerhouse that is Pandas. In

Peter Výboch 4 Sep 05, 2022
.npy, .npz, .mtx converter.

npy-converter Matrix Data Converter. Expand matrix for multi-thread, multi-process Divid matrix for multi-thread, multi-process Support: .mtx, .npy, .

taka 1 Feb 07, 2022
Big Data & Cloud Computing for Oceanography

DS2 Class 2022, Big Data & Cloud Computing for Oceanography Home of the 2022 ISblue Big Data & Cloud Computing for Oceanography class (IMT-A, ENSTA, I

Ocean's Big Data Mining 5 Mar 19, 2022
Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day.

Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day. Correlate the market activity with the Apple Keynote presentations.

2 Jan 04, 2022
Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Amber Electric Usage Summary This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cos

Graham Lea 12 May 26, 2022
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities. This is aimed at those looking to get into the field of D

Joachim 1 Dec 26, 2021
This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

1 Dec 28, 2021