Bacon - Band-limited Coordinate Networks for Multiscale Scene Representation

Related tags

Geolocationbacon
Overview

BACON: Band-limited Coordinate Networks for Multiscale Scene Representation

Project Page | Video | Paper

Official PyTorch implementation of BACON.
BACON: Band-limited Coordinate Networks for Multiscale Scene Representation
David B. Lindell*, Dave Van Veen, Jeong Joon Park, Gordon Wetzstein
Stanford University

Quickstart

To setup a conda environment use these commands

conda env create -f environment.yml
conda activate bacon

# download all datasets
python download_datasets.py

Now you can train networks to fit a 1D function, images, signed distance fields, or neural radiance fields with the following commands.

cd experiments
python train_1d.py --config ./config/1d/bacon_freq1.ini  # train 1D function
python train_img.py --config ./config/img/bacon.ini  # train image
python train_sdf.py --config ./config/sdf/bacon_armadillo.ini  # train SDF
python train_radiance_field.py --config ./config/nerf/bacon_lr.ini  # train NeRF

To visualize outputs in Tensorboard, run the following.

tensorboard --logdir=../logs --port=6006

Band-limited Coordinate Networks

Band-limited coordinate networks have an analytical Fourier spectrum and interpretible behavior. We demonstrate using these networks for fitting simple 1D signals, images, 3D shapes via signed distance functions and neural radiance fields.

Datasets

Datasets can be downloaded using the download_datasets.py script. This script

Training

We provide scripts for training and configuration files to reproduce the results in the paper.

1D Examples

To run the 1D examples, use the experiments/train_1d.py script with any of the config files in experiments/config/1d. These scripts allow training models with BACON, Fourier Features, or SIREN. For example, to train a BACON model you can run

python train_1d.py --config ./config/1d/bacon_freq1.ini

To change the bandwidth of BACON, adjust the maximum frequency with the --max_freq flag. This sets network-equivalent sampling rate used to represent the signal. For example, if the signal you wish to represent has a maximum frequency of 5 cycles per unit interval, this value should be set to at least the Nyquist rate of 2 samples per cycle or 10 samples per unit interval. By default, the frequencies represented by BACON are quantized to intervals of 2*pi; thus, the network is periodic over an interval from -0.5 to 0.5. That is, the output of the network will repeat for input coordinates that exceed an absolute value of 0.5.

Image Fitting

Image fitting can be performed using the config files in experiments/config/img and the train_img.py script. We support training BACON, Fourier Features, SIREN, and networks with the positional encoding from Mip-NeRF.

SDF Fitting

Config files for SDF fitting are in experiments/config/sdf and can be used with the train_sdf.py script. Be sure to download the example datasets before running this script.

We also provide a rendering script to extract meshes from the trained models. The render_sdf.py program extracts a mesh using marching cubes and, optionally, our proposed multiscale adaptive SDF evaluation procedure.

NeRF Reconstruction

Use the config files in experiments/config/nerf with the train_radiance_field.py script to train neural radiance fields. Note that training the full resolution model can takes a while (a few days) so it may be easier to train a low-resolution model to get started. We provide a low-resolution config file in experiments/config/nerf/bacon_lr.ini.

To render output images from a trained model, use the render_nerf.py script. Note that the Blender synthetic datasets should be downloaded and the multiscale dataset generated before running this script.

Initialization Scheme

Finally, we also show a visualization of our initialization scheme in experiments/plot_activation_distributions.py. As shown in the paper, our initialization scheme prevents the distribution of activations from becoming vanishingly small, even for deep networks.

Pretrained models

For convenience, we include pretrained models for the SDF fitting and NeRF reconstruction tasks in the pretrained_models directory. The outputs of these models can be rendered directly using the experiments/render_sdf.py and experiments/render_nerf.py scripts.

Citation

@article{lindell2021bacon,
author = {Lindell, David B. and Van Veen, Dave and Park, Jeong Joon and Wetzstein, Gordon},
title = {BACON: Band-limited coordinate networks for multiscale scene representation},
journal = {arXiv preprint arXiv:2112.04645},
year={2021}
}

Acknowledgments

This project was supported in part by a PECASE by the ARO and NSF award 1839974.

Owner
Stanford Computational Imaging Lab
Next-generation computational imaging and display systems.
Stanford Computational Imaging Lab
Manage your XYZ Hub or HERE Data Hub spaces from Python.

XYZ Spaces for Python Manage your XYZ Hub or HERE Data Hub spaces and Interactive Map Layer from Python. FEATURED IN: Online Python Machine Learning C

HERE Technologies 30 Oct 18, 2022
Using Global fishing watch's data to build a machine learning model that can identify illegal fishing and poaching activities through satellite and geo-location data.

Using Global fishing watch's data to build a machine learning model that can identify illegal fishing and poaching activities through satellite and geo-location data.

Ayush Mishra 3 May 06, 2022
Manipulation and analysis of geometric objects

Shapely Manipulation and analysis of geometric objects in the Cartesian plane. Shapely is a BSD-licensed Python package for manipulation and analysis

3.1k Jan 03, 2023
ColoringMapAlgorithm-CSP- - Graphical Coloring of Countries with Condition Satisfaction Algorithm

ColoringMapAlgorithm-CSP- Condition Satisfaction Algorithm Output Condition

Kerem TAN 2 Jan 10, 2022
Tool to display your current position and angle above your radar

🛠 Tool to display your current position and angle above your radar. As a response to the CS:GO Update on 1.2.2022, which makes cl_showpos a cheat-pro

Miko 6 Jan 04, 2023
A public data repository for datasets created from TransLink GTFS data.

TransLink Spatial Data What: TransLink is the statutory public transit authority for the Metro Vancouver region. This GitHub repository is a collectio

Henry Tang 3 Jan 14, 2022
Get-countries-info - A python code that fetches data of any country

Country-info A python code getting countries information including country's map

CODE 2 Feb 21, 2022
Geodata extensions for Django REST Framework

Django-Spillway Django and Django REST Framework integration of raster and feature based geodata. Spillway builds on the immensely marvelous Django RE

Brian Galey 62 Jan 04, 2023
GetOSM is an OpenStreetMap tile downloader written in Python that is agnostic of GUI frameworks.

GetOSM GetOSM is an OpenStreetMap tile downloader written in Python that is agnostic of GUI frameworks. It is used with tkinter by ProjPicker. Require

Huidae Cho 3 May 20, 2022
iNaturalist observations along hiking trails

This tool reads the route of a hike and generates a table of iNaturalist observations along the trails. It also shows the observations and the route of the hike on a map. Moreover, it saves waypoints

7 Nov 11, 2022
A NASA MEaSUREs project to provide automated, low latency, global glacier flow and elevation change datasets

Notebooks A NASA MEaSUREs project to provide automated, low latency, global glacier flow and elevation change datasets This repository provides tools

NASA Jet Propulsion Laboratory 27 Oct 25, 2022
Python library to decrypt Airtag reports, as well as a InfluxDB/Grafana self-hosted dashboard example

Openhaystack-python This python daemon will allow you to gather your Openhaystack-based airtag reports and display them on a Grafana dashboard. You ca

Bezmenov Denys 19 Jan 03, 2023
Minimum Bounding Box of Geospatial data

BBOX Problem definition: The spatial data users often are required to obtain the coordinates of the minimum bounding box of vector and raster data in

Ali Khosravi Kazazi 1 Sep 08, 2022
Logging the position of the car on an sdcard

audi-mmi-3g-gps-logging Logging the position of the car on an sdcard, startup script origin not clear to me, logging setup and time change is what I d

2 May 31, 2022
A Jupyter - Leaflet.js bridge

ipyleaflet A Jupyter / Leaflet bridge enabling interactive maps in the Jupyter notebook. Usage Selecting a basemap for a leaflet map: Loading a geojso

Jupyter Widgets 1.3k Dec 27, 2022
glTF to 3d Tiles Converter. Convert glTF model to Glb, b3dm or 3d tiles format.

gltf-to-3d-tiles glTF to 3d Tiles Converter. Convert glTF model to Glb, b3dm or 3d tiles format. Usage λ python main.py --help Usage: main.py [OPTION

58 Dec 27, 2022
Google Maps keeps old satellite imagery around for a while – this tool collects what's available for a user-specified region in the form of a GIF.

google-maps-at-88-mph The folks maintaining Google Maps regularly update the satellite imagery it serves its users, but outdated versions of the image

Noah Doersing 111 Sep 27, 2022
Pandas Network Analysis: fast accessibility metrics and shortest paths, using contraction hierarchies :world_map:

Pandana Pandana is a Python library for network analysis that uses contraction hierarchies to calculate super-fast travel accessibility metrics and sh

Urban Data Science Toolkit 321 Jan 05, 2023
WIP: extracting Geometry utilities from datacube-core

odc.geo This is still work in progress. This repository contains geometry related code extracted from Open Datacube. For details and motivation see OD

Open Data Cube 34 Jan 09, 2023
gpdvega is a bridge between GeoPandas and Altair that allows to seamlessly chart geospatial data

gpdvega gpdvega is a bridge between GeoPandas a geospatial extension of Pandas and the declarative statistical visualization library Altair, which all

Ilia Timofeev 49 Jul 25, 2022