Bacon - Band-limited Coordinate Networks for Multiscale Scene Representation

Related tags

Geolocationbacon
Overview

BACON: Band-limited Coordinate Networks for Multiscale Scene Representation

Project Page | Video | Paper

Official PyTorch implementation of BACON.
BACON: Band-limited Coordinate Networks for Multiscale Scene Representation
David B. Lindell*, Dave Van Veen, Jeong Joon Park, Gordon Wetzstein
Stanford University

Quickstart

To setup a conda environment use these commands

conda env create -f environment.yml
conda activate bacon

# download all datasets
python download_datasets.py

Now you can train networks to fit a 1D function, images, signed distance fields, or neural radiance fields with the following commands.

cd experiments
python train_1d.py --config ./config/1d/bacon_freq1.ini  # train 1D function
python train_img.py --config ./config/img/bacon.ini  # train image
python train_sdf.py --config ./config/sdf/bacon_armadillo.ini  # train SDF
python train_radiance_field.py --config ./config/nerf/bacon_lr.ini  # train NeRF

To visualize outputs in Tensorboard, run the following.

tensorboard --logdir=../logs --port=6006

Band-limited Coordinate Networks

Band-limited coordinate networks have an analytical Fourier spectrum and interpretible behavior. We demonstrate using these networks for fitting simple 1D signals, images, 3D shapes via signed distance functions and neural radiance fields.

Datasets

Datasets can be downloaded using the download_datasets.py script. This script

Training

We provide scripts for training and configuration files to reproduce the results in the paper.

1D Examples

To run the 1D examples, use the experiments/train_1d.py script with any of the config files in experiments/config/1d. These scripts allow training models with BACON, Fourier Features, or SIREN. For example, to train a BACON model you can run

python train_1d.py --config ./config/1d/bacon_freq1.ini

To change the bandwidth of BACON, adjust the maximum frequency with the --max_freq flag. This sets network-equivalent sampling rate used to represent the signal. For example, if the signal you wish to represent has a maximum frequency of 5 cycles per unit interval, this value should be set to at least the Nyquist rate of 2 samples per cycle or 10 samples per unit interval. By default, the frequencies represented by BACON are quantized to intervals of 2*pi; thus, the network is periodic over an interval from -0.5 to 0.5. That is, the output of the network will repeat for input coordinates that exceed an absolute value of 0.5.

Image Fitting

Image fitting can be performed using the config files in experiments/config/img and the train_img.py script. We support training BACON, Fourier Features, SIREN, and networks with the positional encoding from Mip-NeRF.

SDF Fitting

Config files for SDF fitting are in experiments/config/sdf and can be used with the train_sdf.py script. Be sure to download the example datasets before running this script.

We also provide a rendering script to extract meshes from the trained models. The render_sdf.py program extracts a mesh using marching cubes and, optionally, our proposed multiscale adaptive SDF evaluation procedure.

NeRF Reconstruction

Use the config files in experiments/config/nerf with the train_radiance_field.py script to train neural radiance fields. Note that training the full resolution model can takes a while (a few days) so it may be easier to train a low-resolution model to get started. We provide a low-resolution config file in experiments/config/nerf/bacon_lr.ini.

To render output images from a trained model, use the render_nerf.py script. Note that the Blender synthetic datasets should be downloaded and the multiscale dataset generated before running this script.

Initialization Scheme

Finally, we also show a visualization of our initialization scheme in experiments/plot_activation_distributions.py. As shown in the paper, our initialization scheme prevents the distribution of activations from becoming vanishingly small, even for deep networks.

Pretrained models

For convenience, we include pretrained models for the SDF fitting and NeRF reconstruction tasks in the pretrained_models directory. The outputs of these models can be rendered directly using the experiments/render_sdf.py and experiments/render_nerf.py scripts.

Citation

@article{lindell2021bacon,
author = {Lindell, David B. and Van Veen, Dave and Park, Jeong Joon and Wetzstein, Gordon},
title = {BACON: Band-limited coordinate networks for multiscale scene representation},
journal = {arXiv preprint arXiv:2112.04645},
year={2021}
}

Acknowledgments

This project was supported in part by a PECASE by the ARO and NSF award 1839974.

Owner
Stanford Computational Imaging Lab
Next-generation computational imaging and display systems.
Stanford Computational Imaging Lab
iNaturalist observations along hiking trails

This tool reads the route of a hike and generates a table of iNaturalist observations along the trails. It also shows the observations and the route of the hike on a map. Moreover, it saves waypoints

7 Nov 11, 2022
Interactive Maps with Geopandas

Create Interactive maps 🗺️ with your geodataframe Geopatra extends geopandas for interactive mapping and attempts to wrap the goodness of amazing map

sangarshanan 46 Aug 16, 2022
gpdvega is a bridge between GeoPandas and Altair that allows to seamlessly chart geospatial data

gpdvega gpdvega is a bridge between GeoPandas a geospatial extension of Pandas and the declarative statistical visualization library Altair, which all

Ilia Timofeev 49 Jul 25, 2022
Advanced raster and geometry manipulations

buzzard In a nutshell, the buzzard library provides powerful abstractions to manipulate together images and geometries that come from different kind o

Earthcube Lab 30 Jun 20, 2022
Imports VZD (Latvian State Land Service) open data into postgis enabled database

Python script main.py downloads and imports Latvian addresses into PostgreSQL database. Data contains parishes, counties, cities, towns, and streets.

Kaspars Foigts 7 Oct 26, 2022
prettymaps - A minimal Python library to draw customized maps from OpenStreetMap data.

A small set of Python functions to draw pretty maps from OpenStreetMap data. Based on osmnx, matplotlib and shapely libraries.

Marcelo de Oliveira Rosa Prates 9k Jan 08, 2023
Python bindings and utilities for GeoJSON

geojson This Python library contains: Functions for encoding and decoding GeoJSON formatted data Classes for all GeoJSON Objects An implementation of

Jazzband 765 Jan 06, 2023
Logging the position of the car on an sdcard

audi-mmi-3g-gps-logging Logging the position of the car on an sdcard, startup script origin not clear to me, logging setup and time change is what I d

2 May 31, 2022
EOReader is a multi-satellite reader allowing you to open optical and SAR data.

Remote-sensing opensource python library reading optical and SAR sensors, loading and stacking bands, clouds, DEM and index.

ICube-SERTIT 152 Dec 30, 2022
ESMAC diags - Earth System Model Aerosol-Cloud Diagnostics Package

Earth System Model Aerosol-Cloud Diagnostics Package This Earth System Model (ES

Pacific Northwest National Laboratory 1 Jan 04, 2022
A simple reverse geocoder that resolves a location to a country

Reverse Geocoder This repository holds a small web service that performs reverse geocoding to determine whether a user specified location is within th

4 Dec 25, 2021
Get-countries-info - A python code that fetches data of any country

Country-info A python code getting countries information including country's map

CODE 2 Feb 21, 2022
Helping data scientists better understand their datasets and models in text classification. With love from ServiceNow.

Azimuth, an open-source dataset and error analysis tool for text classification, with love from ServiceNow. Overview Azimuth is an open source applica

ServiceNow 145 Dec 23, 2022
Global topography (referenced to sea-level) in a 10 arcminute resolution grid

Earth - Topography grid at 10 arc-minute resolution Global 10 arc-minute resolution grids of topography (ETOPO1 ice-surface) referenced to mean sea-le

Fatiando a Terra Datasets 1 Jan 20, 2022
A ninja python package that unifies the Google Earth Engine ecosystem.

A Python package that unifies the Google Earth Engine ecosystem. EarthEngine.jl | rgee | rgee+ | eemont GitHub: https://github.com/r-earthengine/ee_ex

47 Dec 27, 2022
Python module to access the OpenCage geocoding API

OpenCage Geocoding Module for Python A Python module to access the OpenCage Geocoder. Build Status / Code Quality / etc Usage Supports Python 3.6 or n

OpenCage GmbH 57 Nov 01, 2022
Using Global fishing watch's data to build a machine learning model that can identify illegal fishing and poaching activities through satellite and geo-location data.

Using Global fishing watch's data to build a machine learning model that can identify illegal fishing and poaching activities through satellite and geo-location data.

Ayush Mishra 3 May 06, 2022
A light-weight, versatile XYZ tile server, built with Flask and Rasterio :earth_africa:

Terracotta is a pure Python tile server that runs as a WSGI app on a dedicated webserver or as a serverless app on AWS Lambda. It is built on a modern

DHI GRAS 531 Dec 28, 2022
Python package for earth-observing satellite data processing

Satpy The Satpy package is a python library for reading and manipulating meteorological remote sensing data and writing it to various image and data f

PyTroll 882 Dec 27, 2022
Example of animated maps in matplotlib + geopandas using entire time series of congressional district maps from UCLA archive. rendered, interactive version below

Example of animated maps in matplotlib + geopandas using entire time series of congressional district maps from UCLA archive. rendered, interactive version below

Apoorva Lal 5 May 18, 2022