A ninja python package that unifies the Google Earth Engine ecosystem.

Overview

ee_extra

A Python package that unifies the Google Earth Engine ecosystem.

EarthEngine.jl | rgee | rgee+ | eemont

PyPI conda-forge License Documentation Status Tests Awesome Spectral Indices GEE STAC Scale and Offset ee-appshot Black isort


GitHub: https://github.com/r-earthengine/ee_extra

Documentation: https://ee-extra.readthedocs.io

PyPI: https://pypi.python.org/pypi/ee_extra

Conda-forge: https://anaconda.org/conda-forge/ee_extra


Overview

Google Earth Engine (GEE) is a cloud-based service for geospatial processing of vector and raster data. The Earth Engine platform has a JavaScript and a Python API with different methods to process geospatial objects. Google Earth Engine also provides a HUGE PETABYTE-SCALE CATALOG of raster and vector data that users can process online.

There are a lot of fantastic third-party GEE packages and projects around GitHub. However, most of them are coded in JavaScript or Python, and they are not straightforward to translate to R, Julia, or other programming languages. The main goal of eeExtra is to guarantee a smooth import of these projects in other programming languages by standardizing different methods and enabling the use of JavaScript modules outside the Code Editor.

ee_extra_diagram

Some of the eeExtra features are listed here:

  • Automatic scaling and offsetting.
  • Spectral Indices computation (using Awesome Spectral Indices).
  • Clouds and shadows masking.
  • STAC related functions.

And the most important feature:

  • Enabling the usage of JavaScript modules outside the Code Editor.

How does it work?

eeExtra is a Python package, just like any other, but it is a ninja that serves as a methods provider for different environments: R, Julia and Python itself. eeExtra accomplish this by being the powerhouse of some amazing packages such as rgee, rgee+, and eemont.

Public JavaScript module can also be used outside the Code Editor in these packages through eeExtra. For this, eeExtra implements a rigorous JavaScript translation module that allows users to install, require and use JavaScript modules as if they were on the Code Editor!

You may be wondering "Why is it a ninja package?", well, that's a valid question, the whole point of eeExtra resides in the fact that nobody has to use eeExtra itself, but rather use one of the packages that are powered by eeExtra! :)

Installation

Install the latest version from PyPI:

pip install ee_extra

Install soft ee_extra dependencies:

pip install jsbeautifier regex

Upgrade eeExtra by running:

pip install -U ee_extra

Install the latest version from conda-forge:

conda install -c conda-forge ee_extra

Install the latest dev version from GitHub by running:

pip install git+https://github.com/r-earthengine/ee_extra

Features

Let's see some of the awesome features of eeExtra and how to use them from the powered packages in python and R!

Scale and Offset

Most datasets in the data catalog are scaled and in order to get their real values, we have to scale (and sometimes offset) them!

Python (eemont) R (rgee+) Julia (EarthEngine.jl)
import ee, eemont
ee.Initialize()
db = 'COPERNICUS/S2_SR'
S2 = ee.ImageCollection(db)
S2.scaleAndOffset()
library(rgee)
library(rgeeExtra)
ee_Initialize()
db <- 'COPERNICUS/S2_SR'
S2 <- ee$ImageCollection(db)
ee_extra_scaleAndOffset(S2)
using PyCall
using EarthEngine

Initialize()

ee_extra = pyimport("ee_extra")
ee_core = ee_extra.STAC.core
db = "COPERNICUS/S2_SR"
S2 = ee.ImageCollection(db)
ee_core.scaleAndOffset(S2)

Spectral Indices

Do you know the Awesome Spectral Indices? Well, you can compute them automatically with eeExtra!

Python (eemont) R (rgee+) Julia (EarthEngine.jl)
import ee, eemont
ee.Initialize()
db = 'COPERNICUS/S2_SR'
S2 = ee.ImageCollection(db)
S2 = S2.scaleAndOffset()
S2.spectralIndices("EVI")
library(rgee)
library(rgeeExtra)
ee_Initialize()
db <- 'COPERNICUS/S2_SR'
S2 <- ee$ImageCollection(db)
S2 <- ee_extra_scaleAndOffset(S2)
ee_extra_spIndices(S2, "EVI")
using PyCall
using EarthEngine

Initialize()

ee_extra = pyimport("ee_extra")
ee_core = ee_extra.STAC.core
ee_sp = ee_extra.Spectral.core
db = "COPERNICUS/S2_SR"
S2 = ee.ImageCollection(db)
S2 = ee_core.scaleAndOffset(S2)
ee_sp.spectralIndices(S2, "EVI")

STAC features

Access STAC properties easily!

Python (eemont) R (rgee+) Julia (EarthEngine.jl)
import ee, eemont
ee.Initialize()
db = 'COPERNICUS/S2_SR'
S2 = ee.ImageCollection(db)
S2.getSTAC()
library(rgee)
library(rgeeExtra)
ee_Initialize()
db <- 'COPERNICUS/S2_SR'
S2 <- ee$ImageCollection(db)
ee_extra_getSTAC()
  
using PyCall
using EarthEngine

Initialize()

ee_extra = pyimport("ee_extra")
ee_core = ee_extra.STAC.core
db = "COPERNICUS/S2_SR"
S2 = ee.ImageCollection(db)
ee_core.getSTAC(S2)

JavaScript Modules

This is perhaps the most important feature in eeExtra! What if you could use a JavaScript module (originally just useful for the Code Editor) in python or R? Well, wait no more for it!

  • JS Code Editor
var mod = require('users/sofiaermida/landsat_smw_lst:modules/Landsat_LST.js')

var geom = ee.Geometry.Rectangle(-8.91, 40.0, -8.3, 40.4)
var LST = mod.collection("L8", "2018-05-15", "2018-05-31", geom, true)

print(LST)
  • Python eemont
import ee, eemont

ee.Initialize()
module = 'users/sofiaermida/landsat_smw_lst:modules/Landsat_LST.js'
ee.install(module)
mod = ee.require(module)

geom = ee.Geometry.Rectangle(-8.91, 40.0, -8.3, 40.4)
LST = mod.collection("L8", "2018-05-15", "2018-05-31", geom, True)
print(LST)
  • R rgeeExtra
library(rgee)
library(rgeeExtra)

ee_Initialize()

lsmod <- 'users/sofiaermida/landsat_smw_lst:modules/Landsat_LST.js'
mod <- module(lsmod)

geom <- ee$Geometry$Rectangle(-8.91, 40.0, -8.3, 40.4)
LST <- mod$collection("L8", "2018-05-15", "2018-05-31", geom, TRUE)
print(LST)
  • Julia EarthEngine.jl
using PyCall
using EarthEngine

Initialize()

ee_extra = pyimport("ee_extra")
landsat_module = "users/sofiaermida/landsat_smw_lst:modules/Landsat_LST.js"
ee_extra.install(landsat_module)
lsmodule = ee_extra.require(landsat_module)

geom = Rectangle(-8.91, 40.0, -8.3, 40.4)
LST = lsmodule.collection("L8", "2018-05-15", "2018-05-31", geom, true)
print(LST)
🌐 Local tile server for viewing geospatial raster files with ipyleaflet

🌐 Local Tile Server for Geospatial Rasters Need to visualize a rather large raster (gigabytes) you have locally? This is for you. A Flask application

Bane Sullivan 192 Jan 04, 2023
Python 台灣行政區地圖 (2021)

Python 台灣行政區地圖 (2021) 以 python 讀取政府開放平台的 ShapeFile 地圖資訊。歡迎引用或是協作 另有縣市資訊、村里資訊與各種行政地圖資訊 例如: 直轄市、縣市界線(TWD97經緯度) 鄉鎮市區界線(TWD97經緯度) | 政府資料開放平臺: https://data

WeselyOng 12 Sep 27, 2022
A Python interface between Earth Engine and xarray

eexarray A Python interface between Earth Engine and xarray Description eexarray was built to make processing gridded, mesoscale time series data quic

Aaron Zuspan 159 Dec 23, 2022
Extract GoPro highlights and GPMF data.

Python script that parses the gpmd stream for GOPRO moov track (MP4) and extract the GPS info into a GPX (and kml) file.

Chris Auron 2 May 13, 2022
ESMAC diags - Earth System Model Aerosol-Cloud Diagnostics Package

Earth System Model Aerosol-Cloud Diagnostics Package This Earth System Model (ES

Pacific Northwest National Laboratory 1 Jan 04, 2022
A Django application that provides country choices for use with forms, flag icons static files, and a country field for models.

Django Countries A Django application that provides country choices for use with forms, flag icons static files, and a country field for models. Insta

Chris Beaven 1.2k Jan 03, 2023
Using SQLAlchemy with spatial databases

GeoAlchemy GIS Support for SQLAlchemy. Introduction GeoAlchemy is an extension of SQLAlchemy. It provides support for Geospatial data types at the ORM

109 Dec 01, 2022
A package to fetch sentinel 2 Satellite data from Google.

Sentinel 2 Data Fetcher Installation Create a Virtual Environment and activate it. python3 -m venv venv . venv/bin/activate Install the Package via pi

1 Nov 18, 2021
Calculate & view the trajectory and live position of any earth-orbiting satellite

satellite-visualization A cross-platform application to calculate & view the trajectory and live position of any earth-orbiting satellite in 3D. This

Space Technology and Astronomy Cell - Open Source Society 3 Jan 08, 2022
pure-Python (Numpy optional) 3D coordinate conversions for geospace ecef enu eci

Python 3-D coordinate conversions Pure Python (no prerequistes beyond Python itself) 3-D geographic coordinate conversions and geodesy. API similar to

Geospace code 292 Dec 29, 2022
Tool to display your current position and angle above your radar

🛠 Tool to display your current position and angle above your radar. As a response to the CS:GO Update on 1.2.2022, which makes cl_showpos a cheat-pro

Miko 6 Jan 04, 2023
Daily social mapping project in November 2021. Maps made using PyGMT whenever possible.

Daily social mapping project in November 2021. Maps made using PyGMT whenever possible.

Wei Ji 20 Nov 24, 2022
Processing and interpolating spatial data with a twist of machine learning

Documentation | Documentation (dev version) | Contact | Part of the Fatiando a Terra project About Verde is a Python library for processing spatial da

Fatiando a Terra 468 Dec 20, 2022
A python package that extends Google Earth Engine.

A python package that extends Google Earth Engine GitHub: https://github.com/davemlz/eemont Documentation: https://eemont.readthedocs.io/ PyPI: https:

David Montero Loaiza 307 Jan 01, 2023
Fiona reads and writes geographic data files

Fiona Fiona reads and writes geographic data files and thereby helps Python programmers integrate geographic information systems with other computer s

987 Jan 04, 2023
Read images to numpy arrays

mahotas-imread: Read Image Files IO with images and numpy arrays. Mahotas-imread is a simple module with a small number of functions: imread Reads an

Luis Pedro Coelho 67 Jan 07, 2023
Ingest and query genomic intervals from multiple BED files

Ingest and query genomic intervals from multiple BED files.

4 May 29, 2021
iNaturalist observations along hiking trails

This tool reads the route of a hike and generates a table of iNaturalist observations along the trails. It also shows the observations and the route of the hike on a map. Moreover, it saves waypoints

7 Nov 11, 2022
🌐 Local tile server for viewing geospatial raster files with ipyleaflet or folium

🌐 Local Tile Server for Geospatial Rasters Need to visualize a rather large (gigabytes) raster you have locally? This is for you. A Flask application

Bane Sullivan 192 Jan 04, 2023
A simple reverse geocoder that resolves a location to a country

Reverse Geocoder This repository holds a small web service that performs reverse geocoding to determine whether a user specified location is within th

4 Dec 25, 2021